Abstract

Computational approaches, especially finite element analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a “go-to” high biofidelic software tool to simulate and quantify the biomechanics of the foot–ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot–ankle complex. First, a brief history of computational modeling methods and finite element (FE) simulations for foot–ankle models is introduced. Second, a general approach to build an FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate an FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Finally, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot–ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot–ankle FE models in the future.

References

1.
Gribble
,
P. A.
, and
Delahunt
,
E.
,
2019
, “
The International Ankle Consortium: Promoting Long-Term Stability in Ankle-Sprain Research
,”
J. Athletic Train.
,
54
(
6
), pp.
570
571
.10.4085/1062-6050-542.06
2.
Hertel
,
J.
, and
Corbett
,
R. O.
,
2019
, “
An Updated Model of Chronic Ankle Instability
,”
J. Athletic Train.
,
54
(
6
), pp.
572
588
.10.4085/1062-6050-344-18
3.
Herzog
,
M. M.
,
Kerr
,
Z. Y.
,
Marshall
,
S. W.
, and
Wikstrom
,
E. A.
,
2019
, “
Epidemiology of Ankle Sprains and Chronic Ankle Instability
,”
J. Athletic Train.
,
54
(
6
), pp.
603
610
.10.4085/1062-6050-447-17
4.
Kaminski
,
T. W.
,
Needle
,
A. R.
, and
Delahunt
,
E.
,
2019
, “
Prevention of Lateral Ankle Sprains
,”
J. Athletic Train.
,
54
(
6
), pp.
650
661
.10.4085/1062-6050-487-17
5.
Delahunt
,
E.
, and
Remus
,
A.
,
2019
, “
Risk Factors for Lateral Ankle Sprains and Chronic Ankle Instability
,”
J. Athletic Train.
,
54
(
6
), pp.
611
616
.10.4085/1062-6050-44-18
6.
Kraemer
,
W.
,
Denegar
,
C.
, and
Flanagan
,
S.
,
2009
, “
Recovery From Injury in Sport: Considerations in the Transition From Medical Care to Performance Care
,”
Sports Health
,
1
(
5
), pp.
392
395
.10.1177/1941738109343156
7.
Demontiero
,
O.
,
Vidal
,
C.
, and
Duque
,
G.
,
2012
, “
Aging and Bone Loss: New Insights for the Clinician
,”
Ther. Adv. Musculoskeletal Dis.
,
4
(
2
), pp.
61
76
.10.1177/1759720X11430858
8.
Engelke
,
K.
,
van Rietbergen
,
B.
, and
Zysset
,
P.
,
2016
, “
FEA to Measure Bone Strength: A Review
,”
Clin. Rev. Bone Miner. Metab.
,
14
(
1
), pp.
26
37
.10.1007/s12018-015-9201-1
9.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2006
, “
An Advanced FEA Based Force Induced Error Compensation Strategy in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
542
551
.10.1016/j.ijmachtools.2005.06.003
10.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J.
,
Tadepalli
,
S. C.
, and
Morrison
,
T. M.
,
2012
, “
Considerations for Reporting Finite Element Analysis Studies in Biomechanics
,”
J. Biomech.
,
45
(
4
), pp.
625
633
.10.1016/j.jbiomech.2011.11.038
11.
Chan
,
C. C.
, and
Chau
,
K. T.
,
1991
, “
Design of Electrical Machines by the Finite Element Method Using Distributed Computing
,”
Comput. Ind.
,
17
(
4
), pp.
367
374
.10.1016/0166-3615(91)90049-F
12.
Gupta
,
C.
,
Marwaha
,
S.
, and
Manna
,
M. S.
,
2009
, “
Finite Element Method as an Aid to Machine Design: A Computational Tool
,”
COMSOL Conference Bangalore
,
COMSOL
,
Bangalore, India
, Oct.
8
10
.https://www.comsol.fi/paper/finite-element-method-as-an-aid-to-machine-design-a-computational-tool-7347
13.
Morales-Orcajo
,
E.
,
Souza
,
T. R.
,
Bayod
,
J.
, and
Barbosa de Las Casas
,
E.
,
2017
, “
Non-Linear Finite Element Model to Assess the Effect of Tendon Forces on the Foot-Ankle Complex
,”
Med. Eng. Phys.
,
49
, pp.
71
78
.10.1016/j.medengphy.2017.07.010
14.
Logan
,
D. L.
,
2007
,
A First Course in the Finite Element Method
, 4th ed.,
Thomson Learning
, Singapore.
15.
Abdel-Nasser
,
Y. A.
,
2013
, “
Frontal Crash Simulation of Vehicles Against Lighting Columns Using FEM
,”
Alexandria Eng. J.
,
52
(
3
), pp.
295
299
.10.1016/j.aej.2013.01.005
16.
Yamaguchi
,
S.
,
Yamanishi
,
Y.
,
Machado
,
L. S.
,
Matsumoto
,
S.
,
Tovar
,
N.
,
Coelho
,
P. G.
,
Thompson
,
V. P.
, and
Imazato
,
S.
,
2018
, “
In Vitro Fatigue Tests and in Silico Finite Element Analysis of Dental Implants With Different Fixture/Abutment Joint Types Using Computer-Aided Design Models
,”
J. Prosthodontics Res.
,
62
(
1
), pp.
24
30
.10.1016/j.jpor.2017.03.006
17.
Horstemeyer
,
M. F.
,
2012
,
Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design With Science
,
Wiley
, Hoboken, NJ.
18.
Jain
,
M. L.
,
Govind Dhande
,
S.
, and
Vyas
,
N. S.
,
2011
, “
Virtual Modeling of an Ankle Foot Orthosis for Correction of Foot Abnormality
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
257
260
.10.1016/j.rcim.2010.06.008
19.
Filardi
,
V.
,
2018
, “
Finite Element Analysis of the Foot: Stress and Displacement Shielding
,”
J. Orthop.
,
15
(
4
), pp.
974
979
.10.1016/j.jor.2018.08.037
20.
Smolen
,
C.
, and
Quenneville
,
C. E.
,
2017
, “
A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1993
2008
.10.1007/s10439-017-1844-2
21.
Murni
,
N. S.
,
Dambatta
,
M. S.
,
Yeap
,
S. K.
,
Froemming
,
G. R. A.
, and
Hermawan
,
H.
,
2015
, “
Cytotoxicity Evaluation of Biodegradable Zn-3 Mg Alloy Toward Normal Human Osteoblast Cells
,”
Mater. Sci. Eng. C
,
49
, pp.
560
566
.10.1016/j.msec.2015.01.056
22.
Sahu
,
N. K.
, and
Kaviti
,
A. K.
,
2016
, “
A Review of Use FEM Techniques in Modeling of Human Knee Joint
,”
J. Biomimetics, Biomater. Biomed. Eng.
,
28
, pp.
14
25
.10.4028/www.scientific.net/JBBBE.28.14
23.
Cooper
,
R. J.
,
Wilcox
,
R. K.
, and
Jones
,
A. C.
,
2019
, “
Finite Element Models of the Tibiofemoral Joint: A Review of Validation Approaches and Modelling Challenges
,”
Med. Eng. Phys.
,
74
, pp.
1
12
.10.1016/j.medengphy.2019.08.002
24.
Parashar
,
S. K.
, and
Sharma
,
J. K.
,
2016
, “
A Review on Application of Finite Element Modelling in Bone Biomechanics
,”
Perspect. Sci.
,
8
, pp.
696
698
.10.1016/j.pisc.2016.06.062
25.
Behforootan
,
S.
,
Chatzistergos
,
P.
,
Naemi
,
R.
, and
Chockalingam
,
N.
,
2017
, “
Finite Element Modelling of the Foot for Clinical Application: A Systematic Review
,”
Med. Eng. Phys.
,
39
, pp.
1
11
.10.1016/j.medengphy.2016.10.011
26.
Rodgers
,
M. M.
,
1988
, “
Dynamic Biomechanics of the Normal Foot and Ankle During Walking and Running
,”
Phys. Ther.
,
68
(
12
), pp.
1822
1830
.10.1093/ptj/68.12.1822
27.
Tannous
,
R. E.
,
Bandak
,
F. A.
,
Toridis
,
T. G.
, and
Eppinger
,
R. H.
,
1996
, “
Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading
,”
Stapp Car Crash Conference Proceedings
, Warrendale, PA, Nov. 4–6, pp.
219
236
.
28.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. Online
,
15
(
Suppl. 3
), p. 140.10.1186/s12938-016-0284-9
29.
Vijayaragavan
,
E.
, and
Gopal
,
T. V.
,
2016
, “
Biomechanical Modeling of Human Foot Using Finite Element Methods
,”
Indian J. Sci. Technol.
,
9
(
31
), pp.
1
5
.10.17485/ijst/2016/v9i47/86817
30.
Wang
,
Y.
,
Li
,
Z.
,
Wong
,
D. W.-C. C.
,
Cheng
,
C.-K. K.
, and
Zhang
,
M.
,
2018
, “
Finite Element Analysis of Biomechanical Effects of Total Ankle Arthroplasty on the Foot
,”
J. Orthop. Transl.
,
12
, pp.
55
65
.10.1016/j.jot.2017.12.003
31.
Pehde
,
C. E.
,
Bennett
,
J.
,
Lee Peck
,
B.
, and
Gull
,
L.
,
2020
, “
Development of a 3-D Printing Laboratory for Foot and Ankle Applications
,”
Clin. Podiatric Med. Surg.
,
37
(
2
), pp.
195
213
.10.1016/j.cpm.2019.12.011
32.
Dal Maso
,
A.
, and
Cosmi
,
F.
,
2018
, “
3D-Printed Ankle-Foot Orthosis: A Design Method
,”
35th DANUBIA Adria Symposium on Advances in Experimental Mechanics
, Sinaia, Romania, Sept. 25–28, pp.
127
128
.10.1016/j.matpr.2019.03.122
33.
Milusheva
,
S. M.
,
Tosheva
,
E. Y.
,
Hieu
,
L. C.
,
Kouzmanov
,
L. V.
,
Zlatov
,
N.
, and
Toshev
,
Y. E.
,
2006
, “
Personalised Ankle-Foot Orthoses Design Based on Reverse Engineering
,”
Intelligent Production Machines and Systems—Second I*PROMS Virtual International Conference
, July 3–14, pp.
253
257
.10.1016/B978-008045157-2/50048-1
34.
Filardi
,
V.
, and
Milardi
,
D.
,
2017
, “
Experimental Strain Analysis on the Entire Bony Leg Compared With FE Analysis
,”
J. Orthop.
,
14
(
1
), pp.
115
122
.10.1016/j.jor.2016.10.009
35.
Gozar
,
H.
,
Chira
,
A.
,
Nagy
,
Ö.
, and
Derzsi
,
Z.
,
2018
, “
Medical Use of Finite Element Modeling of the Ankle and Foot
,”
J. Interdiscip. Med.
,
3
(
1
), pp.
34
38
.10.1515/jim-2018-0001
36.
Sopher
,
R. S.
,
Amis
,
A. A.
,
Calder
,
J. D.
, and
Jeffers
,
J. R. T.
,
2017
, “
Total Ankle Replacement Design and Positioning Affect Implant-Bone Micromotion and Bone Strains
,”
Med. Eng. Phys.
,
42
, pp.
80
90
.10.1016/j.medengphy.2017.01.022
37.
Sadeghian
,
F.
,
Zakerzadeh
,
M. R.
,
Karimpour
,
M.
, and
Baghani
,
M.
,
2019
, “
Numerical Study of Patient-Specific Ankle-Foot Orthoses for Drop Foot Patients Using Shape Memory Alloy
,”
Med. Eng. Phys.
,
69
, pp.
123
133
.10.1016/j.medengphy.2019.04.004
38.
Qian
,
Z.
,
Ren
,
L.
,
Ding
,
Y.
,
Hutchinson
,
J. R.
, and
Ren
,
L.
,
2013
, “
A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane During Level Walking
,”
PLoS One
,
8
(
11
), p.
e79424
.10.1371/journal.pone.0079424
39.
Cheung
,
J. T. M.
,
Zhang
,
M.
,
Leung
,
A. K. L.
, and
Fan
,
Y. B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.10.1016/j.jbiomech.2004.05.035
40.
Filardi
,
V.
,
2014
, “
FE Analysis of Stress and Displacements Occurring in the Bony Chain of Leg
,”
J. Orthop.
,
11
(
4
), pp.
157
165
.10.1016/j.jor.2014.08.008
41.
Shin
,
J.
,
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2012
, “
A Finite Element Model of the Foot and Ankle for Automotive Impact Applications
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2519
2531
.10.1007/s10439-012-0607-3
42.
Smith-Bindman
,
R.
,
Miglioretti
,
D. L.
, and
Larson
,
E. B.
,
2008
, “
Rising Use of Diagnostic Medical Imaging in a Large Integrated Health System
,”
Health Aff.
,
27
(
6
), pp.
1491
1502
.10.1377/hlthaff.27.6.1491
43.
Rajapakse
,
C. S.
,
Kobe
,
E. A.
,
Batzdorf
,
A. S.
,
Hast
,
M. W.
, and
Wehrli
,
F. W.
,
2018
, “
Accuracy of MRI-Based Finite Element Assessment of Distal Tibia Compared to Mechanical Testing
,”
Bone
,
108
, pp.
71
78
.10.1016/j.bone.2017.12.023
44.
Kraeima
,
J.
,
Dorgelo
,
B.
,
Gulbitti
,
H. A.
,
Steenbakkers
,
R. J. H. M.
,
Schepman
,
K. P.
,
Roodenburg
,
J. L. N.
,
Spijkervet
,
F. K. L.
,
Schepers
,
R. H.
, and
Witjes
,
M. J. H.
,
2018
, “
Multi-Modality 3D Mandibular Resection Planning in Head and Neck Cancer Using CT and MRI Data Fusion: A Clinical Series
,”
Oral Oncol.
,
81
, pp.
22
28
.10.1016/j.oraloncology.2018.03.013
45.
Patrick
,
S.
,
Birur
,
N.
,
Gurushanth
,
K.
,
Raghavan
,
A.
, and
Gurudath
,
S.
,
2017
, “
Comparison of Gray Values of Cone-Beam Computed Tomography With Hounsfield Units of Multislice Computed Tomography: An In Vitro Study
,”
Indian J. Dent. Res.
,
28
(
1
), p.
66
.10.4103/ijdr.IJDR_415_16
46.
Floyd
,
R.
, and
Thompson
,
C. W.
,
2018
,
Manual of Structural Kinesiology
,
McGraw-Hill
,
New York
.
47.
Brockett
,
C. L.
, and
Chapman
,
G. J.
,
2016
, “
Biomechanics of the Ankle
,”
Orthop. Trauma
,
30
(
3
), pp.
232
238
.10.1016/j.mporth.2016.04.015
48.
Floyd
,
R. T.
,
2015
, “
Basic Biomechanical Factors and Concepts
,”
Manual of Structural Kinesiology
,
McGraw-Hill Education
,
New York
, pp.
69
89
.
49.
Buzug
,
T. M.
,
2008
,
Computed Tomography: From Photon Statistics to Modern Cone-Beam CT
,
Springer
, Manhattan, NY.
50.
Heymsfield
,
S. B.
,
Lohman
,
T.
,
Wang
,
Z.
, and
Going
,
S. B.
,
2005
,
Human Body Composition
,
Human Kinetics
,
Champaign, IL
.
51.
Prokop
,
M.
,
2003
,
Spiral and Multislice Computed Tomography of the Body
,
Thieme
, Stuttgart, Germany.
52.
Sysnopsys, Inc.
,
2017
, “Simpleware Software Reference Guide,”
Sysnopsys
, Mountain View, CA.
53.
Burkhart
,
T. A.
,
Andrews
,
D. M.
, and
Dunning
,
C. E.
,
2013
, “
Finite Element Modeling Mesh Quality, Energy Balance and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue
,”
J. Biomech.
,
46
(
9
), pp.
1477
1488
.10.1016/j.jbiomech.2013.03.022
54.
Gray
,
H.
,
2009
,
Gray's Anatomy: With Original Illustrations by Henry Carter
,
Arcturus Publishing
,
London
.
55.
Golanó
,
P.
,
Vega
,
J.
,
de Leeuw
,
P. A. J.
,
Malagelada
,
F.
,
Manzanares
,
M. C.
,
Götzens
,
V.
, and
van Dijk
,
C. N.
,
2010
, “
Anatomy of the Ankle Ligaments: A Pictorial Essay
,”
Knee Surg., Sports Traumatol. Arthroscopy
,
18
(
5
), pp.
557
569
.10.1007/s00167-010-1100-x
56.
Netter
,
F. H.
,
2018
,
Netter Atlas of Human Anatomy
, 7th ed.,
Elsevier
, New York.
57.
Morales-Orcajo
,
E.
,
Bayod
,
J.
,
Becerro-de-Bengoa-Vallejo
,
R.
,
Losa-Iglesias
,
M.
, and
Doblare
,
M.
,
2015
, “
Influence of First Proximal Phalanx Geometry on Hallux Valgus Deformity: A Finite Element Analysis
,”
Med. Biol. Eng. Comput.
,
53
(
7
), pp.
645
653
.10.1007/s11517-015-1260-4
58.
Cheung
,
J. T. M.
,
Zhang
,
M.
, and
An
,
K. N.
,
2006
, “
Effect of Achilles Tendon Loading on Plantar Fascia Tension in the Standing Foot
,”
Clin. Biomech.
,
21
(
2
), pp.
194
203
.10.1016/j.clinbiomech.2005.09.016
59.
Chen
,
W. M.
,
Lee
,
T.
,
Lee
,
P. V. S.
,
Lee
,
J. W.
, and
Lee
,
S. J.
,
2010
, “
Effects of Internal Stress Concentrations in Plantar Soft-Tissue-a Preliminary Three-Dimensional Finite Element Analysis
,”
Med. Eng. Phys.
,
32
(
4
), pp.
324
331
.10.1016/j.medengphy.2010.01.001
60.
Mkandawire
,
C.
,
Ledoux
,
W.
,
Sangeorzan
,
B.
, and
Ching
,
R.
,
2001
, “
Hierarchical Cluster Analysis of Area and Length of Foot and Ankle Ligaments
,”
Proceedings of the 25th Annual Meeting of the American Society of Biomechanics
, San Diego, CA, Aug. 8–11, pp.
8
11
. https://www.rehab.research.va.gov/va/02/htm/rrds_feb_2002_confmkandawire1.htm
61.
Ou
,
H.
,
Qaiser
,
Z.
,
Kang
,
L.
, and
Johnson
,
S.
,
2018
, “
Effect of Skin on Finite Element Modeling of Foot and Ankle During Balanced Standing
,”
J. Shanghai Jiaotong Univ.
,
23
(
1
), pp.
132
137
.10.1007/s12204-018-1918-9
62.
Sun
,
P. C.
,
Shih
,
S. L.
,
Chen
,
Y. L.
,
Hsu
,
Y. C.
,
Yang
,
R. C.
, and
Chen
,
C. S.
,
2012
, “
Biomechanical Analysis of Foot With Different Foot Arch Heights: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
6
), pp.
563
569
.10.1080/10255842.2010.550165
63.
Fellipa
,
C.
,
2012
,
FEM Modeling: Mesh, Loads and BCs
,
University of Colorado
, Boulder, CO, Chap.
7
.
64.
Knupp
,
P.
,
2007
, “
Remarks on Mesh Quality (No. SAND2007-8128C)
,”
Sandia National Laboratories (SNL-NM), Albuquerque, NM.
65.
Quenneville
,
C. E.
, and
Dunning
,
C. E.
,
2011
, “
Development of a Finite Element Model of the Tibia for Short-Duration High-Force Axial Impact Loading
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
205
212
.10.1080/10255842.2010.548324
66.
Ray
,
M. H.
,
Mongiardini
,
M.
,
Atahan
,
A. O.
,
Plaxico
,
C.
, and
Anghileri
,
M.
,
2008
, “
Recommended Procedures for Verification and Validation of Computer Simulations Used for Roadside Safety Applications
,” National Cooperative Highway Research Program (NCHRP) Project, pp.
22
24
. https://www.researchgate.net/publication/313094419_Recommended_procedures_for_verification_and_validation_of_computer_simulations_used_for_roadside_safety_applications
67.
Cheng
,
Z. Q.
,
Thacker
,
J. G.
,
Pilkey
,
W. D.
,
Hollowell
,
W. T.
,
Reagan
,
S. W.
, and
Sieveka
,
E. M.
,
2001
, “
Experiences in Reverse-Engineering of a Finite Element Automobile Crash Model
,”
Finite Elem. Anal. Des.
,
37
(
11
), pp.
843
860
.10.1016/S0168-874X(01)00071-3
68.
Zhang
,
Z.
,
Zhang
,
W.
,
Zhai
,
Z. J.
, and
Chen
,
Q. Y.
,
2007
, “
Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD—Part 2: Comparison With Experimental Data From Literature
,”
HVAC R Res.
,
13
(
6
), pp.
871
886
.10.1080/10789669.2007.10391460
69.
Moore
,
S. M.
,
Ellis
,
B.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
,
2010
, “
The Glenohumeral Capsule Should Be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
66
76
.10.1007/s10439-009-9834-7
70.
Torcasio
,
A.
,
Zhang
,
X.
,
Duyck
,
J.
, and
Van Lenthe
,
G. H.
,
2012
, “
3D Characterization of Bone Strains in the Rat Tibia Loading Model
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
403
410
.10.1007/s10237-011-0320-4
71.
Schober
,
P.
,
Boer
,
C.
, and
Schwarte
,
L. A.
,
2018
, “
Correlation Coefficients: Appropriate Use and Interpretation
,”
Anesth. Analg.
,
126
(
5
), pp.
1763
1768
.10.1213/ANE.0000000000002864
72.
Luczak
,
T.
,
Saucier
,
D.
,
Burch
,
R. F. V.
,
Ball
,
J. E.
,
Chander
,
H.
,
Knight
,
A.
,
Wei
,
P.
, and
Iftekhar
,
T.
,
2018
, “
Closing theWearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle
,”
Electronics
,
7
(
7
), pp.
1
24
.10.3390/electronics7070117
73.
Chander
,
H.
,
Stewart
,
E.
,
Saucier
,
D.
,
Nguyen
,
P.
,
Luczak
,
T.
,
Ball
,
J. E.
,
Knight
,
A. C.
,
Smith
,
B. K.
,
V
,
R. F. B.
, and
Prabhu
,
R. K.
,
2019
, “
Closing the Wearable Gap—Part III: Use of Stretch Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip and Trip Perturbations
,”
Electronics
,
8
(
10
), p.
1083
.10.3390/electronics8101083
74.
Saucier
,
D.
,
Luczak
,
T.
,
Nguyen
,
P.
,
Davarzani
,
S.
,
Peranich
,
P.
,
Ball
,
J. E.
,
Burch
,
R. F.
,
Smith
,
B. K.
,
Chander
,
H.
,
Knight
,
A.
, and
Prabhu
,
R. K.
,
2019
, “
Closing the Wearable Gap—Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements
,”
Sensors
,
19
(
16
), p.
3509
.10.3390/s19163509
75.
Khalid
,
G. A.
,
Prabhu
,
R. K.
,
Arthurs
,
O.
, and
Jones
,
M. D.
,
2019
, “
A Coupled Physical-Computational Methodology for the Investigation of Short Fall Related Infant Head Impact Injury
,”
Forensic Sci. Int.
,
300
, pp.
170
186
.10.1016/j.forsciint.2019.04.034
76.
Wang
,
H.
, and
Brown
,
S. R.
,
2017
, “
The Effects of Total Ankle Replacement on Ankle Joint Mechanics During Walking
,”
J. Sport Heal. Sci.
,
6
(
3
), pp.
340
345
.10.1016/j.jshs.2016.01.012
77.
Shahar
,
F. S.
,
Hameed Sultan
,
M. T.
,
Lee
,
S. H.
,
Jawaid
,
M.
,
Md Shah
,
A. U.
,
Safri
,
S. N. A.
, and
Sivasankaran
,
P. N.
,
2019
, “
A Review on the Orthotics and Prosthetics and the Potential of Kenaf Composites as Alternative Materials for Ankle-Foot Orthosis
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
169
185
.10.1016/j.jmbbm.2019.07.020
78.
Wong
,
D. W. C.
,
Niu
,
W.
,
Wang
,
Y.
, and
Zhang
,
M.
,
2016
, “
Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture
,”
PLoS One
,
11
(
4
), p.
e0154435
.10.1371/journal.pone.0154435
79.
Geuzaine, C., and Remacle, J.-F., 2009, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
, 79(11), pp.
1309
1331
.10.1002/nme.2579
80.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
Sixth Eurographics Italian Chapter Conference
, Salerno, Italy, July 2–4, pp.
129
136
.10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
81.
Moxey
,
D.
,
Cantwell
,
C. D.
,
Bao
,
Y.
,
Cassinelli
,
A.
,
Castiglioni
,
G.
,
Chun
,
S.
,
Juda
,
E.
,
Kazemi
,
E.
,
Lackhove
,
K.
,
Marcon
,
J.
,
Mengaldo
,
G.
,
Serson
,
D.
,
Turner
,
M.
,
Xu
,
H.
,
Peiró
,
J.
,
Kirby
,
R. M.
, and
Sherwin
,
S. J.
,
2020
, “
Nektar++: Enhancing the Capability and Application of High-Fidelity Spectral/Hp Element Methods
,”
Comput. Phys. Commun.
,
249
, p.
107110
.10.1016/j.cpc.2019.107110
82.
Hicks, J., 2018, “
How Scaling Works, OpenSim Documentation
,” accessed Apr. 20, 2020, https://simtk-confluence.stanford.edu:8443/display/OpenSim/How+Scaling+Works
83.
Gray
,
H.
,
1918
,
Anatomy of the Human Body
, 20th ed.,
Lea and Febiger
,
Philadelphia, PA
.
You do not currently have access to this content.