Abstract

Physiological loading is essential for the maintenance of articular cartilage through the regulation of tissue remodeling. To correctly understand the behavior of chondrocytes in their native environment, cell stimulating devices and bioreactors have been developed to examine the effect of mechanical stimuli on chondrocytes. This study describes the design and validation of a novel system for analyzing chondrocyte deformation patterns. This involves an in vitro mechanical device for a controlled application of multi-axial-loading regimes to chondrocyte-seeded agarose constructs and in silico models for analyzing chondrocyte deformation patterns. The computer-controlled device precisely applies compressive, tensile, and shear strains to hydrogel constructs using a customizable macro-based program. The synchronization of the displacements is shown to be accurate with a 1.2% error and is highly reproducible. The device design allows housing for up to eight novel designed free-swelling three-dimensional hydrogel constructs. Constructs include mesh ends and are optimized to withstand the application of up to 7% mechanical tensile and 15% shear strains. Constructs were characterized through mapping the strain within as mechanical load was applied and was validated using light microscopy methods, chondrocyte viability using live/dead imaging, and cell deformation strains. Images were then analyzed to determine the complex deformation strain patterns of chondrocytes under a range of dynamic mechanical stimulations. This is one of the first systems that have characterized construct strains to cellular strains. The features in this device make the system ideally suited for a systematic approach for the investigation of the response of chondrocytes to a complex physiologically relevant deformation profile.

References

1.
Sah
,
R. L.-Y.
,
Kim
,
Y.-J.
,
Doong
,
J.-Y. H.
,
Grodzinsky
,
A. J.
,
Plass
,
A. H. K.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
(
5
), pp.
619
636
.10.1002/jor.1100070502
2.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
691
713
.10.1146/annurev.bioeng.2.1.691
3.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Wong
,
M.
,
Smith
,
R. L.
,
Andriacchi
,
T. P.
, and
Schurman
,
D. J.
,
2004
, “
The Mechanobiology of Articular Cartilage Development and Degeneration
,”
Clin. Orthop. Relat. Res.
, (
427
), pp.
69
77
.10.1097/01.blo.0000144970.05107.7e
4.
Emans
,
P. J.
, and
Peterson
,
L.
,
2014
,
Developing Insights in Cartilage Repair
,
Springer
, Berlin.
5.
Chan
,
D. D.
,
Cai
,
L.
,
Butz
,
K. D.
,
Trippel
,
S. B.
,
Nauman
,
E. A.
, and
Neu
,
C. P.
,
2016
, “
In Vivo Articular Cartilage Deformation: Noninvasive Quantification of Intratissue Strain During Joint Contact in the Human Knee
,”
Sci. Rep.
,
6
, pp.
1
14
.10.1038/srep19220
6.
Bleuel
,
J.
,
Zaucke
,
F.
,
Brüggemann
,
G.-P.
, and
Niehoff
,
A.
,
2015
, “
Effects of Cyclic Tensile Strain on Chondrocyte Metabolism: A Systematic Review
,”
PLoS One
,
10
(
3
), p.
e0119816
.10.1371/journal.pone.0119816
7.
Bian
,
L.
,
Fong
,
J. V.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Ateshian
,
G. A.
,
Cook
,
J. L.
, and
Hung
,
C. T.
,
2010
, “
Dynamic Mechanical Loading Enchances Functional Properties of Tissue-Engineerd Cartilage Using Mature Canine Chondrocytes
,”
Tissue Eng. Part A
,
16
(
5
), pp.
17
20
.10.1089/ten.TEA.2009.0482
8.
Lee
,
D. A.
, and
Bader
,
D. L.
,
1997
, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
,
15
(
2
), pp.
181
188
.10.1002/jor.1100150205
9.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C. B.
,
Wong
,
D. D.
,
Chao
,
P.-H. G.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
,
122
(
3
), pp.
252
260
.10.1115/1.429656
10.
Appelman
,
T. P.
,
Mizrahi
,
J.
,
Elisseeff
,
J. H.
, and
Seliktar
,
D.
,
2011
, “
The Influence of Biological Motifs and Dynamic Mechanical Stimulation in Hydrogel Scaffold Systems on the Phenotype of Chondrocytes
,”
Biomaterials
,
32
(
6
), pp.
1508
1516
.10.1016/j.biomaterials.2010.10.017
11.
Becker
,
J. L.
,
Prewett
,
T. L.
,
Spaulding
,
G. F.
, and
Goodwin
,
T. J.
,
1993
, “
Three-Dimensional Growth and Differentiation of Ovarian Tumor Cell Line in High Aspect Rotating-Wall Vessel: Morphologic and Embryologic Considerations
,”
J. Cell. Biochem.
,
51
(
3
), pp.
283
289
.10.1002/jcb.240510307
12.
Waldman
,
S. D.
,
Spiteri
,
C. G.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
,
2003
, “
Long-Term Intermittent Shear Deformation Improves the Quality of Cartilaginous Tissue Formed In Vitro
,”
J. Orthop. Res.
,
21
(
4
), pp.
590
596
.10.1016/S0736-0266(03)00009-3
13.
Fitzgerald
,
J. B.
,
Jin
,
M.
,
Chai
,
D. H.
,
Siparsky
,
P.
,
Fanning
,
P.
, and
Grodzinsky
,
A. J.
,
2008
, “
Shear- and Compression-Induced Chondrocyte Transcription Requires MAPK Activation in Cartilage Explants
,”
J. Biol. Chem.
,
283
(
11
), pp.
6735
6743
.10.1074/jbc.M708670200
14.
Pingguan-Murphy
,
B.
, and
Nawi
,
I.
,
2012
, “
Upregulation of Matrix Synthesis in Chondrocyte-Seeded Agarose Following Sustained bi-Axial Cyclic Loading
,”
Clinics
,
67
(
8
), pp.
939
944
.10.6061/clinics/2012(08)14
15.
Wang
,
N.
,
Grad
,
S.
,
Stoddart
,
M. J.
,
Niemeyer
,
P.
,
Reising
,
K.
,
Schmal
,
H.
,
S??Dkamp
,
N. P.
,
Alini
,
M.
, and
Salzmann
,
G. M.
,
2014
, “
Particulate Cartilage Under Bioreactor-Induced Compression and Shear
,”
Int. Orthop.
,
38
(
5
), pp.
1105
1111
.10.1007/s00264-013-2194-9
16.
Di Federico
,
E.
,
Shelton
,
J. C.
, and
Bader
,
D. L.
,
2017
, “
Complex Mechanical Conditioning of Cell-Seeded Agarose Constructs Can Influence Chondrocyte Biosynthetic Activity
,”
Biotechnol. Bioeng.
,
114
(
7
), pp.
1614
1625
.10.1002/bit.26273
17.
Kelly
,
P. A.
, and
O'Connor
,
J. J.
,
1996
, “
Transmission of Rapidly Applied Loads Through Articular Cartilage. Part 2: Cracked Cartilage
,”
Proc. Inst. Mech. Eng. H.
,
210
(
1
), pp.
39
49
.10.1243/PIME_PROC_1996_210_389_02
18.
Vanderploeg
,
E. J.
,
Imler
,
S. M.
,
Brodkin
,
K. R.
,
Garcı́a
,
A. J.
, and
Levenston
,
M. E.
,
2004
, “
Oscillatory Tension Differentially Modulates Matrix Metabolism and Cytoskeletal Organization in Chondrocytes and Fibrochondrocytes
,”
J. Biomech.
,
37
(
12
), pp.
1941
1952
.10.1016/j.jbiomech.2004.02.048
19.
Huang
,
J.
,
Ballou
,
L. R.
, and
Hasty
,
K. A.
,
2007
, “
Cyclic Equibiaxial Tensile Strain Induces Both Anabolic and Catabolic Responses in Articular Chondrocytes
,”
Gene
,
404
(
1–2
), pp.
101
109
.10.1016/j.gene.2007.09.007
20.
Wong
,
M.
, and
Carter
,
D. R.
,
2003
, “
Articular Cartilage Functional Histomorphology and Mechanobiology: A Research Perspective
,”
Bone
,
33
(
1
), pp.
1
13
.10.1016/S8756-3282(03)00083-8
21.
Nicodemus
,
G. D.
, and
Bryant
,
S. J.
,
2008
, “
The Role of Hydrogel Structure and Dynamic Loading on Chondrocyte Gene Expression and Matrix Formation
,”
J. Biomech.
,
41
(
7
), pp.
1528
1536
.10.1016/j.jbiomech.2008.02.034
22.
van Beuningen
,
H. M.
,
Stoop
,
R.
,
Buma
,
P.
,
Takahashi
,
N.
,
van der Kraan
,
P. M.
, and
van den Berg
,
W. B.
,
2002
, “
Phenotypic Differences in Murine Chondrocyte Cell Lines Derived From Mature Articular Cartilage
,”
Osteoarthr. Cartil.
,
10
(
12
), pp.
977
986
.10.1053/joca.2002.0855
23.
Leung
,
S.
,
McGlashan
,
S. R.
,
Musson
,
D. S. P.
,
Cornish
,
J.
,
Anderson
,
I. A.
, and
Shim
,
V. B. K.
,
2018
, “
Investigations of Strain Fields in 3D Hydrogels Under Dynamic Confined Loading
,”
J. Med. Biol. Eng.
,
38
(
3
), pp.
514
522
.10.1007/s40846-017-0319-0
24.
Malcolm
,
D. T. K.
,
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Charette
,
P. G.
,
2002
, “
Strain Measurement in Biaxially Loaded Inhomogeneous, Anisotropic Elastic Membranes
,”
Biomech. Model. Mechanobiol.
,
1
(
3
), pp.
197
210
.10.1007/s10237-002-0018-8
25.
Parker
,
M. D.
,
Azhar
,
M.
,
Babarenda Gamage
,
T. P.
,
Alvares
,
D.
,
Taberner
,
A. J.
, and
Nielsen
,
P. M. F.
,
2012
, “
Surface Deformation Tracking of a Silicone Gel Skin Phantom in Response to Normal Indentation
,” Engineering in Medicine and Biology Society (
EMBS
) Proceedings of the 34th Annual International Conference of the IEEE, San Diego, CA, Aug. 28–Sept. 1, pp.
527
530
.10.1109/EMBC.2012.6345984
26.
Kim
,
J. J.
,
Musson
,
D.
,
Mathews
,
B.
,
Cornish
,
J.
,
Anderson
,
I.
, and
Shim
,
V. B.
,
2016
, “
Applying Physiologically Relevant Strains to Tenocytes in an In-Vitro Cell Device Induces In-Vivo Like Behaviours
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
121003
.10.1115/1.4034031
27.
Shim
,
V. B.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Mithraratne
,
K.
, and
Fernandez
,
J. F.
,
2016
, “
The Influence and Biomechanical Role of Cartilage Split Line Pattern on Tibiofemoral Cartilage Stress Distribution During the Stance Phase of Gait
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
195
204
.10.1007/s10237-015-0668-y
28.
Wimmer
,
M. A.
,
Grad
,
S.
,
Kaup
,
T. M.
,
Hänni
,
M.
,
Schneider
,
E.
,
Gogolewski
,
S.
, and
Alini
,
M.
,
2004
, “
Tribology Approach to the Engineering and Study of Articular Cartilage
,”
Tissue Eng.
,
10
(
9–10
), pp.
1436
1445
.10.1089/ten.2004.10.1436
29.
Khoshgoftar
,
M.
,
van Donkelaar
,
C. C.
, and
Ito
,
K.
,
2011
, “
Mechanical Stimulation to Stimulate Formation of a Physiological Collagen Architecture in Tissue- Engineered Cartilage: A Numerical Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
135
144
.10.1080/10255842.2010.519335
30.
Kock
,
L. M.
,
Ito
,
K.
, and
van Donkelaar
,
C. C.
,
2013
, “
Sliding Indentation Enhances Collagen Content and Depth-Dependent Matrix Distribution in Tissue-Engineered Cartilage Constructs
,”
Tissue Eng. Part A
,
19
(
17–18
), pp.
1949
1959
.10.1089/ten.tea.2012.0688
31.
Connelly
,
J. T.
,
Vanderploeg
,
E. J.
, and
Levenston
,
M. E.
,
2004
, “
The Influence of Cyclic Tension Amplitude on Chondrocyte Matrix Synthesis: Experimental and Finite Element Analyses
,”
Biorheology
,
41
(
3–4
), pp.
377
387
. https://pubmed.ncbi.nlm.nih.gov/15299270/
32.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
(
4
), pp.
1497
1508
.10.1242/jcs.108.4.1497
33.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
,
Kimura
,
J. H.
, and
Hunziker
,
E. B.
,
1992
, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
,
10
(
6
), pp.
745
758
.10.1002/jor.1100100602
34.
Knight
,
M. M.
,
Ghori
,
S. A.
,
Lee
,
D. A.
, and
Bader
,
D. L.
,
1998
, “
Measurement of the Deformation of Isolated Chondrocytes in Agarose Subjected to Cyclic Compression
,”
Med. Eng. Phys.
,
20
(
9
), pp.
684
688
.10.1016/S1350-4533(98)00080-0
35.
Lee
,
D. A.
,
Knight
,
M. M.
,
F Bolton
,
J.
,
Idowu
,
B. D.
,
Kayser
,
M. V.
, and
Bader
,
D. L.
,
2000
, “
Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Sub-Cellular Levels
,”
J. Biomech.
,
33
(
1
), pp.
81
95
.10.1016/S0021-9290(99)00160-8
36.
Di Federico
,
E.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
,
2014
, “
Design and Validation of an In Vitro Loading System for the Combined Application of Cyclic Compression and Shear to 3D Chondrocytes-Seeded Agarose Constructs
,”
Med. Eng. Phys.
,
36
(
4
), pp.
534
540
.10.1016/j.medengphy.2013.11.007
37.
Mitchell
,
J. R.
,
1980
, “
Rheology of Gels
,”
J. Text. Stud.
,
11
(
4
), pp.
315
337
.10.1111/j.1745-4603.1980.tb01312.x
38.
Anseth
,
K. S.
,
Bowman
,
C. N.
, and
Brannon-Peppas
,
L.
,
1996
, “
Mechanical Properties of Hydrogels and Their Experimental Determination
,”
Biomaterials
,
17
(
17
), pp.
1647
1657
.10.1016/0142-9612(96)87644-7
39.
Yusoff
,
N.
,
Abu Osman
,
N. A.
, and
Pingguan-Murphy
,
B.
,
2011
, “
Design and Validation of a Bi-Axial Loading Bioreactor for Mechanical Stimulation of Engineered Cartilage
,”
Med. Eng. Phys.
,
33
(
6
), pp.
782
788
.10.1016/j.medengphy.2011.01.013
40.
Sawae
,
Y.
,
Shelton
,
J. C.
,
Bader
,
D. L.
, and
Knight
,
M. M.
,
2004
, “
Confocal Analysis of Local and Cellular Strains in Chondrocyte-Agarose Constructs Subjected to Mechanical Shear
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
860
870
.10.1023/B:ABME.0000030261.38396.c0
41.
Wilkins
,
R. J.
,
Browning
,
J. A.
, and
Ellory
,
J. C.
,
2000
, “
Topical Review Surviving in a Matrix: Membrane Transport in Articular Chondrocytes
,”
J. Membr. Biol.
,
177
(
2
), pp.
95
108
.10.1007/s002320001103
42.
Lee
,
D. A.
, and
Bader
,
D. L.
,
1995
, “
The Development and Characterization of Anin Vitro System to Study Strain-Induced Cell Deformation in Isolated Chondrocytes
,”
Vitr. Cell. Dev. Biol. Anim.
,
31
(
11
), pp.
828
835
.10.1007/BF02634565
43.
Kääb
,
M. J.
,
Richards
,
R. G.
,
Ito
,
K.
,
Ap Gwynn
,
I.
, and
Nötzli
,
H. P.
,
2003
, “
Deformation of Chondrocytes in Articular Cartilage Under Compressive Load: A Morphological Study
,”
Cells Tissues Organs
,
175
(
3
), pp.
133
139
.10.1159/000074629
44.
Di Federico
,
E.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
,
2020
, “
3D Models of Chondrocytes Within Biomimetic Scaffolds: Effects of Cell Deformation From Loading Regimens
,”
Clin. Biomech.
, 79, pp.
1
10
.10.1016/j.clinbiomech.2020.01.022
You do not currently have access to this content.