Abstract

Recently, the assisted bidirectional Glenn (ABG) procedure has been proposed as an alternative to the modified Blalock–Taussig shunt (mBTS) operation for neonates with single-ventricle physiology. Despite success in reducing heart workload and maintaining sufficient pulmonary flow, the ABG also raised the superior vena cava (SVC) pressure to a level that may not be tolerated by infants. To lower the SVC pressure, we propose a modified version of the ABG (mABG), in which a shunt with a slit-shaped nozzle exit is inserted at the junction of the right and left brachiocephalic veins. The proposed operation is compared against the ABG, the mBTS, and the bidirectional Glenn (BDG) operations using closed-loop multiscale simulations. Both normal (2.3 Wood units-m2) and high (7 Wood units-m2) pulmonary vascular resistance (PVR) values are simulated. The mABG provides the highest oxygen saturation, oxygen delivery, and pulmonary flow rate in comparison to the BDG and the ABG. At normal PVR, the SVC pressure is significantly reduced below that of the ABG and the BDG (mABG: 4; ABG: 8; BDG: 6; mBTS: 3 mmHg). However, the SVC pressure remains high at high PVR (mABG: 15; ABG: 16; BDG: 12; mBTS: 3 mmHg), motivating an optimization study to improve the ABG hemodynamics efficiency for a broader range of conditions in the future. Overall, the mABG preserves all advantages of the original ABG procedure while reducing the SVC pressure at normal PVR.

References

References
1.
d'Udekem
,
Y.
,
Xu
,
M. Y.
,
Galati
,
J. C.
,
Lu
,
S.
,
Iyengar
,
A. J.
,
Konstantinov
,
I. E.
,
Wheaton
,
G. R.
,
Ramsay
,
J. M.
,
Grigg
,
L. E.
,
Millar
,
J.
,
Cheung
,
M. M.
, and
Brizard
,
C. P.
,
2012
, “
Predictors of Survival After Single-Ventricle Palliation: The Impact of Right Ventricular Dominance
,”
J. Am. Coll. Cardiol.
,
59
(
13
), pp.
1178
1185
.10.1016/j.jacc.2011.11.049
2.
Bartram
,
U.
,
Grünenfelder
,
J.
, and
Van Praagh
,
M. R.
,
1997
, “
Causes of Death After the Modified Norwood Procedure: A Study of 122 Postmortem Cases
,”
Ann. Thorac. Surg.
,
64
(
6
), pp.
1795
1802
.10.1016/S0003-4975(97)01041-2
3.
Migliavacca
,
F.
,
Dubini
,
G.
,
Pennati
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
,
Hsia
,
T.-Y.
, and
de Leval
,
M. R.
,
2000
, “
Computational Model of the Fluid Dynamics in Systemic-to-Pulmonary Shunts
,”
J. Biomech.
,
33
(
5
), pp.
549
557
.10.1016/S0021-9290(99)00219-5
4.
Migliavacca
,
F.
,
Pennati
,
G.
,
Di Martino
,
E.
,
Dubini
,
G.
, and
Pietrabissa
,
R.
,
2002
, “
Pressure Drops in a Distensible Model of End-to-Side Anastomosis in Systemic-to-Pulmonary Shunts
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
3
), pp.
243
248
.10.1080/10255840290010689
5.
Song
,
M.-H.
,
Sato
,
M.
, and
Ueda
,
Y.
,
2001
, “
Three-Dimensional Simulation of the Blalock-Taussig Shunt Using Computational Fluid Dynamics
,”
Surg. Today
,
31
(
8
), pp.
688
694
.10.1007/s005950170071
6.
Waniewski
,
J.
,
Kurowska
,
W.
,
Mizerski
,
J. K.
,
Trykozko
,
A.
,
Nowinski
,
K.
,
Brzezinska-Rajszys
,
G.
, and
Kosciesza
,
A.
,
2005
, “
The Effects of Graft Geometry on the Patency of a Systemic-to-Pulmonary Shunt: A Computational Fluid Dynamics Study
,”
Artif. Organs
,
29
(
8
), pp.
642
650
.10.1111/j.1525-1594.2005.29102.x
7.
Bove
,
E. L.
,
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Balossino
,
R.
,
Pennati
,
G.
,
Lloyd
,
T. R.
,
Khambadkone
,
S.
,
Hsia
,
T.-Y.
, and
Dubini
,
G.
,
2008
, “
Use of Mathematic Modeling to Compare and Predict Hemodynamic Effects of the Modified Blalock–Taussig and Right Ventricle–Pulmonary Artery Shunts for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
136
(
2
), pp.
312
320
.10.1016/j.jtcvs.2007.04.078
8.
Esmaily-Moghadam
,
M.
,
Murtuza
,
B.
,
Hsia
,
T.-Y.
, and
Marsden
,
A.
,
2015
, “
Simulations Reveal Adverse Hemodynamics in Patients With Multiple Systemic to Pulmonary Shunts
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031001
.10.1115/1.4029429
9.
Esmaily Moghadam
,
M.
,
Migliavacca
,
F.
,
Vignon-Clementel
,
I. E.
,
Hsia
,
T.-Y.
, and
Marsden
,
A. L.
,
2012
, “
Optimization of Shunt Placement for the Norwood Surgery Using Multi-Domain Modeling
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051002
.10.1115/1.4006814
10.
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
,
Pietrabissa
,
R.
,
Urcelay
,
G.
,
Bove
,
E. L.
,
Hsia
,
T.-Y.
, and
de Leval
,
M. R.
,
2001
, “
Modeling of the Norwood Circulation: Effects of Shunt Size, Vascular Resistances, and Heart Rate
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
280
(
5
), pp.
H2076
H2086
.10.1152/ajpheart.2001.280.5.H2076
11.
Moghadam
,
M. E.
,
Hsia
,
T.-Y.
, and
Marsden
,
A. L.
,
2015
, “
The Assisted Bidirectional Glenn: A Novel Surgical Approach for First-Stage Single-Ventricle Heart Palliation
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
3
), pp.
699
705
.10.1016/j.jtcvs.2014.10.035
12.
Zhou
,
J.
,
Esmaily-Moghadam
,
M.
,
Conover
,
T. A.
,
Hsia
,
T.-Y.
,
Marsden
,
A. L.
, and
Figliola
,
R. S.
,
2015
, “
In Vitro Assessment of the Assisted Bidirectional Glenn Procedure for Stage One Single Ventricle Repair
,”
Cardiovasc. Eng. Technol.
,
6
(
3
), pp.
256
267
.10.1007/s13239-015-0232-z
13.
Shang
,
J. K.
,
Esmaily
,
M.
,
Verma
,
A.
,
Reinhartz
,
O.
,
Figliola
,
R. S.
,
Hsia
,
T.-Y.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2019
, “
Patient-Specific Multiscale Modeling of the Assisted Bidirectional Glenn
,”
Ann. Thorac. Surg.
,
107
(
4
), pp.
1232
1239
.10.1016/j.athoracsur.2018.10.024
14.
Verma
,
A.
,
Esmaily
,
M.
,
Shang
,
J.
,
Figliola
,
R.
,
Feinstein
,
J. A.
,
Hsia
,
T.-Y.
, and
Marsden
,
A. L.
,
2018
, “
Optimization of the Assisted Bidirectional Glenn Procedure for First Stage Single Ventricle Repair
,”
World J. Pediat. Congenital Heart Surg.
,
9
(
2
), pp.
157
170
.10.1177/2150135117745026
15.
DeCampli
,
W. M.
,
2015
, “
The Steam Locomotive Makes a Comeback: A New Solution to Staged Single-Ventricle Palliation?
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
3
), pp.
706
707
.10.1016/j.jtcvs.2014.11.064
16.
Heinemann
,
M.
,
Breuer
,
J.
,
Steger
,
V.
,
Steil
,
E.
,
Sieverding
,
L.
, and
Ziemer
,
G.
,
2001
, “
Incidence and Impact of Systemic Venous Collateral Development After Glenn and Fontan Procedures
,”
Thorac. Cardiovasc. Surg.
,
49
(
3
), pp.
172
178
.10.1055/s-2001-14339
17.
Morgan
,
C. D.
,
Wolf
,
M. S.
,
Le
,
T. M.
,
Shannon
,
C. N.
,
Wellons
,
J. C.
, and
Mettler
,
B. A.
,
2015
, “
Cerebral Ventriculomegaly After the Bidirectional Glenn (BDG) Shunt: A Single-Institution Retrospective Analysis
,”
Child's Nerv. Syst.
,
31
(
11
), pp.
2131
2134
.10.1007/s00381-015-2881-5
18.
Moghadam
,
M. E.
,
Vignon-Clementel
,
I. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
, pp.
63
79
.10.1016/j.jcp.2012.07.035
19.
Marsden
,
A. L.
, and
Esmaily-Moghadam
,
M.
,
2015
, “
Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support
,”
ASME Appl. Mech. Rev.
,
67
(
3
), p.
030804
.10.1115/1.4029909
20.
Ficial
,
B.
,
Finnemore
,
A. E.
,
Cox
,
D. J.
,
Broadhouse
,
K. M.
,
Price
,
A. N.
,
Durighel
,
G.
,
Ekitzidou
,
G.
,
Hajnal
,
J. V.
,
Edwards
,
A. D.
, and
Groves
,
A. M.
,
2013
, “
Validation Study of the Accuracy of Echocardiographic Measurements of Systemic Blood Flow Volume in Newborn Infants
,”
J. Am. Soc. Echocardiography
,
26
(
12
), pp.
1365
1371
.10.1016/j.echo.2013.08.019
21.
Ruano
,
R.
,
de Fatima Yukie Maeda
,
M.
,
Niigaki
,
J. I.
, and
Zugaib
,
M.
,
2007
, “
Pulmonary Artery Diameters in Healthy Fetuses From 19 to 40 Weeks' Gestation
,”
J. Ultrasound Med.
,
26
(
3
), pp.
309
316
.10.7863/jum.2007.26.3.309
22.
Box
,
F. M.
,
van der
,
R. J.
,
Marcel
,
G.
,
Rutten
,
C. M.
, and
Reiber
,
J. H.
,
2005
, “
The Influence of Flow, Vessel Diameter, and Non-Newtonian Blood Viscosity on the Wall Shear Stress in a Carotid Bifurcation Model for Unsteady Flow
,”
Invest. Radiol.
,
40
(
5
), pp.
277
294
.10.1097/01.rli.0000160550.95547.22
23.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
24.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2015
, “
A bi-Partitioned Iterative Algorithm for Solving Linear Systems Arising From Incompressible Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
40
62
.10.1016/j.cma.2014.11.033
25.
Esmaily Moghadam
,
M.
,
Bazilevs
,
Y.
,
Hsia
,
T.-Y.
,
Vignon-Clementel
,
I. E.
, and
Marsden
,
A. L.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.10.1007/s00466-011-0599-0
26.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
,
2007
, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
1–4
), pp.
173
201
.10.1016/j.cma.2007.07.016
27.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
28.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2015
, “
Impact of Data Distribution on the Parallel Performance of Iterative Linear Solvers With Emphasis on CFD of Incompressible Flows
,”
Comput. Mech.
,
55
(
1
), pp.
93
103
.10.1007/s00466-014-1084-3
29.
Mosher
,
P.
,
Ross
,
J.
, Jr
,
McFate
,
P. A.
, and
Shaw
,
R. F.
,
1964
, “
Control of Coronary Blood Flow by an Autoregulatory Mechanism
,”
Circ. Res.
,
14
(
3
), pp.
250
259
.10.1161/01.RES.14.3.250
30.
Peach
,
M. J.
,
1977
, “
Renin-Angiotensin System: Biochemistry and Mechanisms of Action
,”
Physiol. Rev.
,
57
(
2
), pp.
313
370
.10.1152/physrev.1977.57.2.313
31.
Robertson
,
G. L.
,
Shelton
,
R. L.
, and
Athar
,
S.
,
1976
, “
The Osmoregulation of Vasopressin
,”
Kidney Int.
,
10
(
1
), pp.
25
37
.10.1038/ki.1976.76
32.
Arthurs
,
C. J.
,
Lau
,
K. D.
,
Asrress
,
K. N.
,
Redwood
,
S. R.
, and
Figueroa
,
C. A.
,
2016
, “
A Mathematical Model of Coronary Blood Flow Control: Simulation of Patient-Specific Three-Dimensional Hemodynamics During Exercise
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
310
(
9
), pp.
H1242
H1258
.10.1152/ajpheart.00517.2015
33.
Si
,
H.
,
2015
, “
Tetgen, A Delaunay-Based Quality Tetrahedral Mesh Generator
,”
ACM Trans. Math. Software
,
41
(
2
), pp.
1
36
.10.1145/2629697
34.
Ladeveze
,
P.
, and
Leguillon
,
D.
,
1983
, “
Error Estimate Procedure in the Finite Element Method and Applications
,”
SIAM J. Numer. Anal.
,
20
(
3
), pp.
485
509
.10.1137/0720033
35.
Joseph
,
C.
,
Pettitt
,
T. W.
,
Theodorus
,
M.
, and
Aluizio
,
S.
,
2008
, “
Development of the Pulmonary Arteries After the Norwood Procedure: Comparison Between Blalock-Taussig Shunt and Right Ventricular–Pulmonary Artery Conduit
,”
Ann. Thorac. Surg.
,
86
(
4
), pp.
1299
1304
.10.1016/j.athoracsur.2008.06.016
36.
Griselli
,
M.
,
McGuirk
,
S. P.
,
Ofoe
,
V.
,
Stümper
,
O.
,
Wright
,
J. G.
,
de Giovanni
,
J. V.
,
Barron
,
D. J.
, and
Brawn
,
W. J.
,
2006
, “
Fate of Pulmonary Arteries Following Norwood Procedure
,”
Eur. J. Cardio-Thorac. Surg.
,
30
(
6
), pp.
930
935
.10.1016/j.ejcts.2006.08.007
37.
Glenn
,
W. W.
,
1958
, “
Circulatory Bypass of the Right Side of the Heart: Shunt Between Superior Vena Cava and Distal Right Pulmonary Artery–Report of Clinical Application
,”
New Engl. J. Med.
,
259
(
3
), pp.
117
120
.10.1056/NEJM195807172590304
38.
Carlo
,
D. D.
,
Williams
,
W. G.
,
Freedom
,
R. M.
,
Trusler
,
G. A.
, and
Rowe
,
R. D.
,
1982
, “
The Role of Cava-Pulmonary (Glenn) Anastomosis in the Palliative Treatment of Congenital Heart Disease
,”
J. Thorac. Cardiovasc. Surg.
,
83
(
3
), pp.
437
442
.10.1016/S0022-5223(19)37281-2
39.
Kopf
,
G. S.
,
Laks
,
H.
,
Stansel
,
H. C.
,
Hellenbrand
,
W. E.
,
Kleinman
,
C. S.
, and
Talner
,
N. S.
,
1990
, “
Thirty-Year Follow-Up of Superior Vena Cava-Pulmonary Artery (Glenn) Shunts
,”
J. Thorac. Cardiovasc. Surg.
,
100
(
5
), pp.
662
671
.10.1016/S0022-5223(19)35463-7
40.
Warrier
,
G.
,
Dharan
,
B. S.
,
Koshy
,
S.
,
Kumar
,
S.
,
Krishnanaik
,
S.
, and
Rao
,
S. G.
,
2004
, “
Bidirectional Glenn Operation in Infancy
,”
Indian J. Thorac. Cardiovasc. Surg.
,
20
(
4
), pp.
159
163
.10.1007/s12055-004-0075-y
41.
Jaquiss
,
R. D.
,
Ghanayem
,
N. S.
,
Hoffman
,
G. M.
,
Fedderly
,
R. T.
,
Cava
,
J. R.
,
Mussatto
,
K. A.
, and
Tweddell
,
J. S.
,
2004
, “
Early Cavopulmonary Anastomosis in Very Young Infants After the Norwood Procedure: Impact on Oxygenation, Resource Utilization, and Mortality
,”
J. Thorac. Cardiovasc. Surgery
,
127
(
4
), pp.
982
989
.10.1016/j.jtcvs.2003.10.035
42.
Petrucci
,
O.
,
Khoury
,
P. R.
,
Manning
,
P. B.
, and
Eghtesady
,
P.
,
2010
, “
Outcomes of the Bidirectional Glenn Procedure in Patients Less Than 3 Months of Age
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
3
), pp.
562
568
.10.1016/j.jtcvs.2009.08.025
43.
Haggerty
,
C. M.
,
Kanter
,
K. R.
,
Restrepo
,
M.
,
de Zélicourt
,
D. A.
,
Parks
,
W. J.
,
Rossignac
,
J.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2013
, “
Simulating Hemodynamics of the Fontan Y-Graft Based on Patient-Specific In Vivo Connections
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
3
), pp.
663
670
.10.1016/j.jtcvs.2012.03.076
44.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2009
, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
2
), pp.
394
403
.10.1016/j.jtcvs.2008.06.043
45.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zélicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2007
, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
83
(
6
), pp.
2182
2190
.10.1016/j.athoracsur.2006.12.079
46.
Yang
,
W.
,
Vignon-Clementel
,
I. E.
,
Troianowski
,
G.
,
Mohan Reddy
,
V.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2012
, “
Hepatic Blood Flow Distribution and Performance in Conventional and Novel Y-Graft Fontan Geometries: A Case Series Computational Fluid Dynamics Study
,”
J. Thorac. Cardiovas. Surg.
,
143
(
5
), pp.
1086
1097
.10.1016/j.jtcvs.2011.06.042
47.
Martin
,
M. H.
,
Feinstein
,
J. A.
,
Chan
,
F. P.
,
Marsden
,
A. L.
,
Yang
,
W.
, and
Reddy
,
V. M.
,
2015
, “
Technical Feasibility and Intermediate Outcomes of Using a Handcrafted, Area-Preserving, Bifurcated Y-Graft Modification of the Fontan Procedure
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
1
), pp.
239
245
.10.1016/j.jtcvs.2014.08.058
48.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.10.1016/S0006-3495(72)86085-5
49.
Vahidkhah
,
K.
,
Cordasco
,
D.
,
Abbasi
,
M.
,
Ge
,
L.
,
Tseng
,
E.
,
Bagchi
,
P.
, and
Azadani
,
A. N.
,
2016
, “
Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis
,”
Ann. Biomed. Eng.
,
44
(
9
), pp.
2724
2736
.10.1007/s10439-016-1577-7
50.
Wu
,
W.-T.
,
Jamiolkowski
,
M. A.
,
Wagner
,
W. R.
,
Aubry
,
N.
,
Massoudi
,
M.
, and
Antaki
,
J. F.
,
2017
, “
Multi-Constituent Simulation of Thrombus Deposition
,”
Sci. Rep.
,
7
(
1
), p.
42720
.10.1038/srep42720
51.
Long
,
C. C.
,
Hsu
,
M.-C.
,
Bazilevs
,
Y.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2012
, “
Fluid–Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
513
527
.10.1002/cnm.1485
52.
Barnea
,
O.
,
Santamore
,
W. P.
,
Rossi
,
A.
,
Salloum
,
E.
,
Chien
,
S.
, and
Austin
,
E. H.
,
1998
, “
Estimation of Oxygen Delivery in Newborns With a Univentricular Circulation
,”
Circulation
,
98
(
14
), pp.
1407
1413
.10.1161/01.CIR.98.14.1407
You do not currently have access to this content.