Abstract

When simulating blood flow in intracranial aneurysms (IAs), the Newtonian model seems to be ubiquitous. However, analyzing the results from the few studies on this subject, the doubt remains on whether it is necessary to use non-Newtonian models in computational fluid dynamics (CFD) simulations of cerebral vascular flows. The objective of this study is to investigate whether different rheology models would influence the hemodynamic parameters related to the wall shear stress (WSS) for ruptured and unruptured IA cases, especially because ruptured aneurysms normally have morphological features, such as lobular regions and blebs, that could trigger non-Newtonian phenomena in the blood flow due to low shear rates. Using CFD in an open-source framework, we simulated four ruptured and four unruptured patient-specific aneurysms to assess the influence of the blood modeling on the main hemodynamic variables associated with aneurysm formation, growth, and rupture. Results for WSS and oscillatory shear index (OSI) and their metrics were obtained using Casson and Carreau–Yasuda non-Newtonian models and were compared with those obtained using the Newtonian model. We found that all differences between non-Newtonian and the Newtonian models were consistent among all cases irrespective of their rupture status. We further found that the WSS at peak systole is overestimated by more than 50% by using the non-Newtonian models, but its metrics based on time and surface averaged values are less affected—the maximum relative difference among the cases is 7% for the Casson model. On the other hand, the surface-averaged OSI is underestimated by more than 30% by the non-Newtonian models. These results suggest that it is recommended to investigate different blood rheology models in IAs simulations when specific parameters to characterize the flow are needed, such as peak-systole WSS and OSI.

References

1.
van Gijn
,
J.
,
Rinkel
,
G. J. E.
,
Gijn
,
J. V.
, and
Rinkel
,
G. J. E.
,
2001
, “
Subarachnoid Haemorrhage: Diagnosis, Causes and Management
,”
Brain
,
124
(
2
), pp.
249
278
.10.1093/brain/124.2.249
2.
Hop
,
J. W.
,
Rinkel
,
G. J.
,
Algra
,
A.
, and
Van Gijn
,
J.
,
1997
, “
Case-Fatality Rates and Functional Outcome After Subarachnoid Hemorrhage: A Systematic Review
,”
Stroke
,
28
(
3
), pp.
660
664
.10.1161/01.STR.28.3.660
3.
Tremmel
,
M.
,
Dhar
,
S.
,
Levy
,
E. I.
,
Mocco
,
J.
, and
Meng
,
H.
,
2009
, “
Influence of Intracranial Aneurysm-to-Parent Vessel Size Ratio on Hemodynamics and Implication for Rupture: Results From a Virtual Experimental Study
,”
Neurosurgery
,
64
(
4
), pp.
622
633
.10.1227/01.NEU.0000341529.11231.69
4.
Fukazawa
,
K.
,
Ishida
,
F.
,
Umeda
,
Y.
,
Miura
,
Y.
,
Shimosaka
,
S.
,
Matsushima
,
S.
,
Taki
,
W.
, and
Suzuki
,
H.
,
2015
, “
Using Computational Fluid Dynamics Analysis to Characterize Local Hemodynamic Features of Middle a Aneurysm Rupture Points
,”
World Neurosurg.
,
83
(
1
), pp.
80
86
.10.1016/j.wneu.2013.02.012
5.
Cebral
,
J.
,
Ollikainen
,
E.
,
Chung
,
B. J.
,
Mut
,
F.
,
Sippola
,
V.
,
Jahromi
,
B. R.
,
Tulamo
,
R.
,
Hernesniemi
,
J.
,
Niemelä
,
M.
,
Robertson
,
A.
, and
Frösen
,
J.
,
2017
, “
Flow Conditions in the Intracranial Aneurysm Lumen Are Associated With Inflammation and Degenerative Changes of the Aneurysm Wall
,”
Am. J. Neuroradiol.
,
38
(
1
), pp.
119
126
.10.3174/ajnr.A4951
6.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
7.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
,
2004
, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
264
273
.10.1023/B:ABME.0000012746.31343.92
8.
Dhar
,
S.
,
Tremmel
,
M.
,
Mocco
,
J.
,
Kim
,
M.
,
Yamamoto
,
J.
,
Siddiqui
,
A. H.
,
Hopkins
,
L. N.
, and
Meng
,
H.
,
2008
, “
Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment
,”
Neurosurgery
,
63
(
2
), pp.
185
196
.10.1227/01.NEU.0000316847.64140.81
9.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
145
151
.10.3174/ajnr.A2419
10.
Lindgren
,
A.
,
Koivisto
,
T.
,
Björkman
,
J.
,
von und zu Fraunberg
,
M.
,
Helin
,
K.
,
Jääskeläinen
,
J. E.
, and
Frösen
,
J.
,
2016
, “
Irregular Shape of Intracranial Aneurysm Indicates Rupture Risk Irrespective of Size in a Population-Based Cohort
,”
Stroke
,
47
(
5
), pp.
1219
1226
.10.1161/STROKEAHA.115.012404
11.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2006
, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
27
(
8
), pp.
1703
1709
.www.ajnr.org/content/27/8/1703
12.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
,
Taylor
,
C. A.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
13.
Chnafa
,
X. C.
,
Brina
,
X. O.
,
Pereira
,
V. M.
, and
Steinman
,
X. D. A.
,
2018
, “
Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations
,”
Am. J. Neuroradiol.
,
39
(
2
), pp.
337
343
.10.3174/ajnr.A5484
14.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
464
475
.10.1115/1.2895428
15.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.10.3233/BIR-1991-283-415
16.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
,
2003
, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
Am. J. Neuroradiol.
,
24
(
4
), pp.
559
566
. www.ajnr.org/content/24/4/559
17.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C. M.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiol.
,
32
(
2
), pp.
264
270
.10.3174/ajnr.A2274
18.
Saqr
,
K. M.
,
Rashad
,
S.
,
Tupin
,
S.
,
Niizuma
,
K.
,
Hassan
,
T.
,
Tominaga
,
T.
, and
Ohta
,
M.
,
2019
, “
What Does Computational Fluid Dynamics Tell us About Intracranial Aneurysms? A Meta-Analysis and Critical Review
,”
J. Cereb. Blood Flow Metab.
,
40
(
5
), pp.
1021
1039
.10.1177/0271678X19854640
19.
Valencia
,
A.
,
Zarate
,
A.
,
Galvez
,
M.
, and
Badilla
,
L.
,
2006
, “
Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm
,”
Int. J. Numer. Methods Fluids
,
50
(
6
), pp.
751
764
.10.1002/fld.1078
20.
Fisher
,
C.
, and
Rossmann
,
J. S.
,
2009
, “
Effect of Non-Newtonian Behavior on Hemodynamics of Cerebral Aneurysms
,”
ASME J. Biomech. Eng.
,
131
(
9
), p.
091004
.10.1115/1.3148470
21.
Xiang
,
J.
,
Tremmel
,
M.
,
Kolega
,
J.
,
Levy
,
E. I.
,
Natarajan
,
S. K.
, and
Meng
,
H.
,
2012
, “
Newtonian Viscosity Model Could Overestimate Wall Shear Stress in Intracranial Aneurysm Domes and Underestimate Rupture Risk
,”
J. NeuroInterventional Surg.
,
4
(
5
), pp.
351
357
.10.1136/neurintsurg-2011-010089
22.
Evju
,
O.
,
Valen-Sendstad
,
K.
, and
Mardal
,
K.-A.
,
2013
, “
A Study of Wall Shear Stress in 12 Aneurysms With Respect to Different Viscosity Models and Flow Conditions
,”
J. Biomech.
,
46
(
16
), pp.
2802
2808
.10.1016/j.jbiomech.2013.09.004
23.
Hippelheuser
,
J. E.
,
Lauric
,
A.
,
Cohen
,
A. D.
, and
Malek
,
A. M.
,
2014
, “
Realistic non-Newtonian Viscosity Modelling Highlights Hemodynamic Differences Between Intracranial Aneurysms With and Without Surface Blebs
,”
J. Biomech.
,
47
(
15
), pp.
3695
3703
.10.1016/j.jbiomech.2014.09.027
24.
Castro
,
M. A.
,
Olivares
,
M. C. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2014
, “
Unsteady Wall Shear Stress Analysis From Image-Based Computational Fluid Dynamic Aneurysm Models Under Newtonian and Casson Rheological Models
,”
Med. Biol. Eng. Comput.
,
52
(
10
), pp.
827
839
.10.1007/s11517-014-1189-z
25.
Khan
,
M. O.
,
Steinman
,
D. A.
, and
Valen-Sendstad
,
K.
,
2017
, “
Non-Newtonian Versus Numerical Rheology: Practical Impact of Shear-Thinning on the Prediction of Stable and Unstable Flows in Intracranial Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
7
), p.
e2836
.10.1002/cnm.2836
26.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
,
2005
, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
,
102
(
2
), pp.
355
362
.10.3171/jns.2005.102.2.0355
27.
Piccinelli
,
M.
,
Veneziani
,
A.
,
Steinman
,
D. A.
,
Remuzzi
,
A.
, and
Antiga
,
L.
,
2009
, “
A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms
,”
IEEE Trans. Med. Imaging
,
28
(
8
), pp.
1141
1155
.10.1109/TMI.2009.2021652
28.
Shibeshi
,
S. S.
, and
Collins
,
W. E.
,
2005
, “
The Rheology of Blood Flow in a Branched Arterial System With Three-Dimensional Model: A Numerical Study
,”
Appl. Rheol.
,
15
(
6
), pp.
398
405
.10.1515/arh-2005-0020
29.
Isaksen
,
J. G.
,
Bazilevs
,
Y.
,
Kvamsdal
,
T.
,
Zhang
,
Y.
,
Kaspersen
,
J. H.
,
Waterloo
,
K.
,
Romner
,
B.
, and
Ingebrigtsen
,
T.
,
2008
, “
Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation
,”
Stroke
,
39
(
12
), pp.
3172
3178
.10.1161/STROKEAHA.107.503698
30.
Fung
,
Y. C.
,
1993
, “
Biomechanics: Motion
,”
Flow, Stress, and Growth
,
Springer
, New York.
31.
Merrill
,
E. W.
,
Gilliland
,
E. R.
,
Cokelet
,
G. R.
,
Shin
,
H.
,
Britten
,
A.
, and
Wells
,
R. E.
,
1963
, “
Rheology of Human Blood, Near and at Zero Flow: Effects of Temperature and Hematocrit Level
,”
Biophys. J.
,
3
(
3
), pp.
199
213
.10.1016/S0006-3495(63)86816-2
32.
Robertson
,
A. M.
,
Sequeira
,
A.
, and
Owens
,
R. G.
,
2009
, “
Rheological Models for Blood
,”
Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System
,
Springer
, Milan, Italy, pp.
211
241
.
33.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.10.1088/0967-3334/26/4/013
34.
Zarrinkoob
,
L.
,
Ambarki
,
K.
,
Wåhlin
,
A.
,
Birgander
,
R.
,
Eklund
,
A.
, and
Malm
,
J.
,
2015
, “
Blood Flow Distribution in Cerebral Arteries
,”
J. Cereb. Blood Flow Metab.
,
35
(
4
), pp.
648
654
.10.1038/jcbfm.2014.241
35.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
36.
He
,
X.
,
Ku
,
D. N.
,
Engineering
,
B.
,
He
,
X.
, and
Researcher
,
I.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
37.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm. Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
(
11
), pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
38.
Greenland
,
S.
,
Senn
,
S. J.
,
Rothman
,
K. J.
,
Carlin
,
J. B.
,
Poole
,
C.
,
Goodman
,
S. N.
, and
Altman
,
D. G.
,
2016
, “
Statistical Tests, P Values, Confidence Intervals, and Power: A Guide to Misinterpretations
,”
Eur. J. Epidemiol.
,
31
(
4
), pp.
337
350
.10.1007/s10654-016-0149-3
39.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
. 10.1161/01.ATV.5.3.293
40.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.10.1093/cvr/cvt044
41.
Shimogonya
,
Y.
,
Ishikawa
,
T.
,
Imai
,
Y.
,
Matsuki
,
N.
, and
Yamaguchi
,
T.
,
2009
, “
Can Temporal Fluctuation in Spatial Wall Shear Stress Gradient Initiate a Cerebral Aneurysm? A Proposed Novel Hemodynamic Index, the Gradient Oscillatory Number (GON)
,”
J. Biomech.
,
42
(
4
), pp.
550
554
.10.1016/j.jbiomech.2008.10.006
42.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2016
, “
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow
,”
ASME J. Biomed. Eng.
,
138
(
1
), p.
014503
.10.1115/1.4032056
43.
Zhang
,
Y.
,
Jing
,
L.
,
Zhang
,
Y.
,
Liu
,
J.
, and
Yang
,
X.
,
2016
, “
Low Wall Shear Stress is Associated With the Rupture of Intracranial Aneurysm With Known Rupture Point: Case Report and Literature Review
,”
BMC Neurol.
,
16
(
1
), pp. 1–4.10.1186/s12883-016-0759-0
44.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
45.
Lu
,
G.
,
Huang
,
L.
,
Zhang
,
X. L.
,
Wang
,
S. Z.
,
Hong
,
Y.
,
Hu
,
Z.
, and
Geng
,
D. Y.
,
2011
, “
Influence of Hemodynamic Factors on Rupture of Intracranial Aneurysms: Patient-Specific 3D Mirror Aneurysms Model Computational Fluid Dynamics Simulation
,”
Am. J. Neuroradiol.
,
32
(
7
), pp.
1255
1261
.10.3174/ajnr.A2461
46.
Boussel
,
L.
,
Rayz
,
V.
,
Mcculloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study
,”
Stroke
,
39
(
11
), pp.
2997
3002
.10.1161/STROKEAHA.108.521617
47.
Ribeiro De Sousa
,
D.
,
Vallecilla
,
C.
,
Chodzynski
,
K.
,
Corredor Jerez
,
R.
,
Malaspinas
,
O.
,
Faruk
,
O.
,
Ouared
,
R.
,
Vanhamme
,
L.
,
Legrand
,
A.
,
Chopard
,
B.
,
Courbebaisse
,
G.
, and
Boudjeltia
,
K. Z.
,
2016
, “
Determination of a Shear Rate Threshold for Thrombus Formation in Intracranial Aneurysms
,”
J. NeuroInterventional Surg.
,
8
(
8
), pp.
853
858
.10.1136/neurintsurg-2015-011737
48.
Kallmes
,
D. F.
,
2012
, “
Point: CFD—Computational Fluid Dynamics or Confounding Factor Dissemination
,”
Am. J. Neuroradiol.
,
33
(
3
), pp.
395
398
.10.3174/ajnr.A2993
49.
Cebral
,
J. R.
, and
Meng
,
H.
,
2012
, “
Counterpoint: Realizing the Clinical Utility of Computational Fluid Dynamics—Closing the Gap
,”
Am. J. Neuroradiol.
, 33(3), pp.
396
398
.10.3174/ajnr.A2994
50.
Jou
,
L.-D.
,
Lee
,
D. H.
,
Morsi
,
H.
, and
Mawad
,
M. E.
,
2008
, “
Wall Shear Stress on Ruptured and Unruptured Intracranial Aneurysms at the Internal Carotid Artery
,”
Am. J. Neuroradiol.
,
29
(
9
), pp.
1761
1767
.10.3174/ajnr.A1180
You do not currently have access to this content.