Abstract

Skull fracture is a common finding for both accidental and abusive head trauma in infants and young children, and may provide important clues as to the energy and directionality of the event leading to the skull fracture. However, little is understood regarding the mechanics of skull fracture in the pediatric skull, and how accidental fall parameters contribute to skull fracture patterns. The objectives of this research were to utilize a newly developed linear elastic fracture mechanics finite element model of infant skull fracture to investigate the effect of impact angle and fall height on the predictions of skull fracture patterns in infants. Nine impact angles of right parietal bone impacts were simulated from three different heights onto a rigid plate. The average ± standard deviation of the distance between the impact location and fracture initiation site was 8.0 ± 5.9 mm. Impact angle significantly affected the fracture initiation site (p < 0.0001) and orientation (p < 0.0001). A 15 deg variation in impact angle changed the initiation site up to 47 mm. The orientation of the fracture pattern was dependent on the impact location and ran either horizontal or vertical toward the ossification center of the bone. Fall height significantly affected the fracture length (p = 0.0356). Specifically, at the same impact angle, a 0.3 m increase in fall height increased the skull fracture length by 21.39 ± 34.26 mm. These data indicate that environmental variability needs to be carefully considered when evaluating infant skull fracture patterns from low-height falls.

References

1.
Parks
,
S. E.
,
Sugerman
,
D.
,
Xu
,
L.
, and
Coronado
,
V.
,
2012
, “
Characteristics of Non-Fatal Abusive Head Trauma Among Children in the USA, 2003-2008: Application of the CDC Operational Case Definition to National Hospital Inpatient Data
,”
Inj. Prev.
,
18
(
6
), pp.
392
398
.10.1136/injuryprev-2011-040234
2.
Parks
,
S. E.
,
Kegler
,
S. R.
,
Annest
,
J. L.
, and
Mercy
,
J. A.
,
2012
, “
Characteristics of Fatal Abusive Head Trauma Among Children in the USA: 2003-2007: An Application of the CDC Operational Case Definition to National Vital Statistics Data
,”
Inj. Prev.
,
18
(
3
), pp.
193
199
.10.1136/injuryprev-2011-040128
3.
Hinds
,
T.
,
Shalaby-Rana
,
E.
,
Jackson
,
A. M.
, and
Khademian
,
Z.
,
2015
, “
Aspects of Abuse: Abusive Head Trauma
,”
Curr. Prob. Pediatr. Ad.
,
45
(
3
), pp.
71
79
.10.1016/j.cppeds.2015.02.002
4.
Joyce
,
T.
, and
Huecker
,
M. R.
,
2019
,
Pediatric Abusive Head Trauma
,
StatPearls
,
Treasure Island, FL
(Shaken Baby Syndrome).
5.
Hobbs
,
C. J.
,
1984
, “
Skull Fracture and the Diagnosis of Abuse
,”
Arch. Dis.
,
59
(
3
), pp.
246
252
.10.1136/adc.59.3.246
6.
Meservy
,
C. J.
,
Towbin
,
R.
,
McLaurin
,
R. L.
,
Myers
,
P. A.
, and
Ball
,
W.
,
1987
, “
Radiographic Characteristics of Skull Fractures Resulting From Child Abuse
,”
Am. J. Roentgenol.
,
149
(
1
), pp.
173
175
.10.2214/ajr.149.1.173
7.
Leventhal
,
J. M.
,
Thomas
,
S. A.
,
Rosenfield
,
N. S.
, and
Markowitz
,
R. I.
,
1993
, “
Fractures in Young Children: Distinguishing Child Abuse From Unintentional Injuries
,”
Am. J. Dis. Child
,
147
(
1
), pp.
87
92
.10.1001/archpedi.1993.02160250089028
8.
Weber
,
W.
,
1984
, “
Experimental Studies of Skull Fracture in Infants
,”
Z. Rechtsmed.
,
92
(
2
), pp.
87
94
.10.1007/BF02116216
9.
A. M
,
L.
,
2011
,
Studies of the Human Head From Neonate to Adult
,
Department of Biomedical Engineering Duke University
, Durham, NC.
10.
Coats
,
B.
,
Margulies
,
S. S.
, and
Ji
,
S.
,
2007
, “
Parametric Study of Head Impact in the Infant
,”
Stapp Car Crash J.
,
51
, pp.
1
15
.10.4271/2007-22-0001
11.
Hajiaghamemar
,
M.
,
Lan
,
I. S.
,
Christian
,
C. W.
,
Coats
,
B.
, and
Margulies
,
S. S.
,
2019
, “
Infant Skull Fracture Risk for Low Height Falls
,”
Int. J. Legal Med.
,
133
(
3
), pp.
847
862
.10.1007/s00414-018-1918-1
12.
Li
,
Z.
,
Park
,
B.-K.
,
Liu
,
W.
,
Zhang
,
J.
,
Reed
,
M. P.
,
Rupp
,
J. D.
,
Hoff
,
C. N.
, and
Hu
,
J.
,
2015
, “
A Statistical Skull Geometry Model for Children 0-3 Years Old
,”
PLoS One
,
10
(
5
), p.
e0127322
.10.1371/journal.pone.0127322
13.
Roth
,
S.
,
Raul
,
J.-S.
, and
Willinger
,
R.
,
2010
, “
Finite Element Modelling of Paediatric Head Impact: Global Validation Against Experimental Data
,”
Comput. Meth. Prog. Biol.
,
99
(
1
), pp.
25
33
.10.1016/j.cmpb.2009.10.004
14.
Li
,
X.
,
Sandler
,
H.
, and
Kleiven
,
S.
,
2019
, “
Infant Skull Fractures: Accident or Abuse?: Evidences From Biomechanical Analysis Using Finite Element Head Models
,”
Forensic Sci. Int
,
294
, pp.
173
182
.10.1016/j.forsciint.2018.11.008
15.
He
,
J.
,
Yan
,
J.
,
Margulies
,
S.
,
Coats
,
B.
, and
Spear
,
A. D.
,
2020
, “
An Adaptive-Remeshing Framework to Predict Impact-Induced Skull Fracture in Infants
,”
Biomech. Model Mech.
, 19(5), pp.
1595
1605
.10.1007/s10237-020-01293-9
16.
Thompson
,
A. K.
,
Bertocci
,
G.
,
Rice
,
W.
, and
Pierce
,
M. C.
,
2011
, “
Pediatric Short-Distance Household Falls: Biomechanics and Associated Injury Severity
,”
Accid. Anal. Prev.
,
43
(
1
), pp.
143
150
.10.1016/j.aap.2010.07.020
17.
Prange
,
M. T.
,
Luck
,
J. F.
,
Dibb
,
A.
,
Van Ee
,
C. A.
,
Nightingale
,
R. W.
, and
Myers
,
B. S.
,
2004
, “
Mechanical Properties and Anthropometry of the Human Infant Head
,”
Stapp Car Crash J.
,
48
, pp.
279
299
.10.4271/2004-22-0013
18.
Fracture Analysis Consultants, Inc.
,
2018
, “FRANC3D Reference Manual,”
Fracture Analysis Consultants
, Ithaca, NY, accessed Feb. 16, 2019, http://www.fracanalysis.com/software.html
19.
MSC Software
,
2017
, “
MSC Patran
,” MSC Software, Irvine, CA, accessed Dec. 8, 2017, https://www.mscsoftware.com/product/patran
20.
McPherson
,
G. K.
, and
Kriewall
,
T. J.
,
1980
, “
The Elastic Modulus of Fetal Cranial Bone: A First Step Towards an Understanding of the Biomechanics of Fetal Head Molding
,”
J. Biomech.
,
13
(
1
), pp.
9
16
.10.1016/0021-9290(80)90003-2
21.
Coats
,
B.
, and
Margulies
,
S. S.
,
2006
, “
Material Properties of Human Infant Skull and Suture at High Rates
,”
J. Neurotrauma
,
23
(
8
), pp.
1222
1232
.10.1089/neu.2006.23.1222
22.
Metcalf
,
R. M.
,
Comstock
,
J.
, and
Coats
,
B.
,
2021
, “
High-Rate Anisotropic and Region-Dependent Properties in Human Infant Cranial Bone
,”
ASME J. Biomech. Eng.
, 143(6), p.
061010
.10.1115/1.4050127
23.
Peterson
,
J.
, and
Dechow
,
P. C.
,
2002
, “
Material Properties of the Inner and Outer Cortical Tables of the Human Parietal Bone
,”
Anat. Rec.
,
268
(
1
), pp.
7
15
.10.1002/ar.10131
24.
Bojtar
,
I.
,
Galos
,
M.
, and
Scharle
,
A.
,
1994
, “
Fracture Mechanical Analysis of Human Skull
,”
Period Polytech-Civ.
,
38
(
4
), pp.
367
374
.https://pp.bme.hu/ci/article/view/3801
25.
Wang
,
X.
,
Shen
,
X.
,
Li
,
X.
, and
Agrawal
,
C. M.
,
2002
, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone
,
31
(
1
), pp.
1
7
.10.1016/S8756-3282(01)00697-4
26.
Coats
,
B.
, and
Margulies
,
S. S.
,
2008
, “
Potential for Head Injuries in Infants From Low-Height Falls: Laboratory Investigation
,”
J. Neurosurg.
,
2
(
5
), pp.
321
330
.10.3171/PED.2008.2.11.321
27.
Li
,
X.
,
Sandler
,
H.
, and
Kleiven
,
S.
,
2017
, “
The Importance of Nonlinear Tissue Modelling in Finite Element Simulations of Infant Head Impacts
,”
Biomech. Model Mech.
,
16
(
3
), pp.
823
840
.10.1007/s10237-016-0855-5
You do not currently have access to this content.