Abstract

Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms—specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.

References

1.
Lim
,
W. L.
,
Liau
,
L. L.
,
Ng
,
M. H.
,
Chowdhury
,
S. R.
, and
Law
,
J. X.
,
2019
, “
Current Progress in Tendon and Ligament Tissue Engineering
,”
Tissue Eng. Regen. Med.
,
16
(
6
), pp.
549
571
.10.1007/s13770-019-00196-w
2.
Butler
,
D. L.
,
Juncosa
,
N.
, and
Dressler
,
M. R.
,
2004
, “
Functional Efficacy of Tendon Repair Processes
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
303
329
.10.1146/annurev.bioeng.6.040803.140240
3.
Yang
,
G.
,
Rothrauff
,
B. B.
, and
Tuan
,
R. S.
,
2013
, “
Tendon and Ligament Regeneration and Repair: Clinical Relevance and Developmental Paradigm
,”
Birth Defects Res. Part C Embryo Today Rev.
,
99
(
3
), pp.
203
222
.10.1002/bdrc.21041
4.
Pennisi
,
E.
,
2002
, “
Tending Tender Tendons
,”
Science
,
295
(
5557
), pp.
1011
1011
.10.1126/science.295.5557.1011
5.
Dyment
,
N. A.
,
Barrett
,
J. G.
,
Awad
, H.
A.
,
Bautista
,
C. A.
,
Banes
,
A. J.
, and
Butler
,
D. L.
,
2020
, “
A Brief History of Tendon and Ligament Bioreactors: Impact and Future Prospects
,”
J. Orthop. Res.
, 38(
11
), pp.
1
13
.10.1002/jor.24784
6.
Tedesco
,
F. S.
,
Dellavalle
,
A.
,
Diaz-Manera
,
J.
,
Messina
,
G.
, and
Cossu
,
G.
,
2010
, “
Repairing Skeletal Muscle: Regenerative Potential of Skeletal Muscle Stem Cells
,”
J. Clin. Invest.
,
120
(
1
), pp.
11
19
.10.1172/JCI40373
7.
Sass
,
F.
,
Fuchs
,
M.
,
Pumberger
,
M.
,
Geissler
,
S.
,
Duda
,
G.
,
Perka
,
C.
, and
Schmidt-Bleek
,
K.
,
2018
, “
Immunology Guides Skeletal Muscle Regeneration
,”
Int. J. Mol. Sci.
,
19
(
3
), p.
835
.10.3390/ijms19030835
8.
Grounds
,
M. D.
,
1991
, “
Towards Understanding Skeletal Muscle Regeneration
,”
Pathol. - Res. Pract.
,
187
(
1
), pp.
1
22
.10.1016/S0344-0338(11)81039-3
9.
Derwin
,
K. A.
,
Badylak
,
S. F.
,
Steinmann
,
S. P.
, and
Iannotti
,
J. P.
,
2010
, “
Extracellular Matrix Scaffold Devices for Rotator Cuff Repair
,”
J. Shoulder Elb. Surg.
,
19
(
3
), pp.
467
476
.10.1016/j.jse.2009.10.020
10.
Wu
,
F.
,
Nerlich
,
M.
, and
Docheva
,
D.
,
2017
, “
Tendon Injuries
,”
EFORT Open Rev.
,
2
(
7
), pp.
332
342
.10.1302/2058-5241.2.160075
11.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
570
575
.10.1115/1.1318906
12.
Benam
,
K. H.
,
Dauth
,
S.
,
Hassell
,
B.
,
Herland
,
A.
,
Jain
,
A.
,
Jang
,
K.-J.
,
Karalis
,
K.
,
Kim
,
H. J.
,
MacQueen
,
L.
,
Mahmoodian
,
R.
,
Musah
,
S.
,
Torisawa
,
Y.
,
van der Meer
,
A. D.
,
Villenave
,
R.
,
Yadid
,
M.
,
Parker
,
K. K.
, and
Ingber
,
D. E.
,
2015
, “
Engineered In Vitro Disease Models
,”
Annu. Rev. Pathol. Mech. Dis.
,
10
(
1
), pp.
195
262
.10.1146/annurev-pathol-012414-040418
13.
Wall
,
M.
,
Butler
,
D.
,
Haj
,
A. E.
,
Bodle
,
J. C.
,
Loboa
,
E. G.
, and
Banes
,
A. J.
,
2018
, “
Key Developments That Impacted the Field of Mechanobiology and Mechanotransduction
,”
J. Orthop. Res.
,
36
(
2
), pp.
605
619
.10.1002/jor.23707
14.
Bramson
,
M. T. K.
,
Van Houten
,
S. K.
, and
Corr
,
D. T., 2020
,
Mechanobiology in Soft Tissue Engineering,
G. L. Niebur, ed.,
Mechanobiology,
Elsevier, Notre Dame, IN.
15.
Martin
,
I.
,
Wendt
,
D.
, and
Heberer
,
M.
,
2004
, “
The Role of Bioreactors in Tissue Engineering
,”
Trends Biotechnol.
,
22
(
2
), pp.
80
86
.10.1016/j.tibtech.2003.12.001
16.
O'Brien
,
F. J.
,
2011
, “
Biomaterials & Scaffolds for Tissue Engineering
,”
Mater. Today
,
14
(
3
), pp.
88
95
.10.1016/S1369-7021(11)70058-X
17.
Henkel
,
J.
, and
Hutmacher
,
D. W.
,
2013
, “
Design and Fabrication of Scaffold-Based Tissue Engineering
,”
BioNanoMaterials
,
14
(
3–4
), pp.
171
193
.10.1515/bnm-2013-0021
18.
Lin
,
S.
,
Hapach
,
L.
,
Reinhart-King
,
C.
, and
Gu
,
L.
,
2015
, “
Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model
,”
Materials (Basel
),
8
(
8
), pp.
5376
5384
.10.3390/ma8085254
19.
Benhardt
,
H. A.
, and
Cosgriff-Hernandez
,
E. M.
,
2009
, “
The Role of Mechanical Loading in Ligament Tissue Engineering
,”
Tissue Eng. Part B Rev.
,
15
(
4
), pp.
467
475
.10.1089/ten.teb.2008.0687
20.
Vogel
,
V.
,
2018
, “
Unraveling the Mechanobiology of Extracellular Matrix
,”
Annu. Rev. Physiol.
,
80
(
1
), pp.
353
387
.10.1146/annurev-physiol-021317-121312
21.
Crupi
,
A.
,
Costa
,
A.
,
Tarnok
,
A.
,
Melzer
,
S.
, and
Teodori
,
L.
,
2015
, “
Inflammation in Tissue Engineering: The Janus Between Engraftment and Rejection
,”
Eur. J. Immunol.
,
45
(
12
), pp.
3222
3236
.10.1002/eji.201545818
22.
Longo
,
U. G.
,
Ronga
,
M.
, and
Maffulli
,
N.
,
2009
, “
Achilles Tendinopathy
,”
Sports Med. Arthrosc.
,
17
(
2
), pp.
112
126
.10.1097/JSA.0b013e3181a3d625
23.
Zhang
,
H.
,
Zhou
,
L.
, and
Zhang
,
W.
,
2014
, “
Control of Scaffold Degradation in Tissue Engineering: A Review
,”
Tissue Eng. Part B Rev.
,
20
(
5
), pp.
492
502
.10.1089/ten.teb.2013.0452
24.
Verissimo
,
A. R.
, and
Nakayama
,
K.
,
2017
, “
Scaffold-Free Biofabrication
,”
3D Printing and Biofabrication
,
Springer International Publishing
,
Cham
, pp.
1
20
. ”
25.
DuRaine
,
G. D.
,
Brown
,
W. E.
,
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2015
, “
Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages
,”
Ann. Biomed. Eng.
,
43
(
3
), pp.
543
554
.10.1007/s10439-014-1161-y
26.
Ovsianikov
,
A.
,
Khademhosseini
,
A.
, and
Mironov
,
V.
,
2018
, “
The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies
,”
Trends Biotechnol.
,
36
(
4
), pp.
348
357
.10.1016/j.tibtech.2018.01.005
27.
Guilak
,
F.
,
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Baaijens
,
F. P. T.
,
2014
, “
Biomechanics and Mechanobiology in Functional Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
1933
1940
.10.1016/j.jbiomech.2014.04.019
28.
Biga
,
L. M.
,
Dawson
,
S.
,
Harwell
,
A.
,
Hopkins
,
R.
,
Kaufmann
,
J.
,
LeMaster
,
M.
,
Matern
,
P.
,
Morrison-Graham
,
K.
,
Quick
,
D.
, and
Runyeon
,
J.
,
2019
, “
10.2 Skeletal Muscle
,”
Anatomy and Physiology
,
Oregon State University, Corvallis, OR
.
29.
Frontera
,
W. R.
, and
Ochala
,
J.
,
2015
, “
Skeletal Muscle: A Brief Review of Structure and Function
,”
Calcif. Tissue Int.
,
96
(
3
), pp.
183
195
.10.1007/s00223-014-9915-y
30.
Zhang
,
L.
,
Hu
,
J.
, and
Athanasiou
,
K. A.
,
2009
, “
The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration
,”
Crit. Rev. Biomed. Eng.
,
37
(
1–2
), pp.
1
57
.10.1615/CritRevBiomedEng.v37.i1-2.10
31.
Carter
,
D. R.
,
Beaupré
,
G. S.
,
Wong
,
M.
,
Smith
,
R. L.
,
Andriacchi
,
T. P.
, and
Schurman
,
D. J.
,
2004
, “
The Mechanobiology of Articular Cartilage Development and Degeneration
,”
Clin. Orthop. Relat. Res.
,
427
(
427 Suppl
), pp.
S69
S77
.10.1097/01.blo.0000144970.05107.7e
32.
Temenoff
,
J. S.
, and
Mikos
,
A. G.
,
2000
, “
Review: Tissue Engineering for Regeneration of Articular Cartilage
,”
Biomaterials
,
21
(
5
), pp.
431
440
.10.1016/S0142-9612(99)00213-6
33.
Chighizola
,
M.
,
Dini
,
T.
,
Lenardi
,
C.
,
Milani
,
P.
,
Podestà
,
A.
, and
Schulte
,
C.
,
2019
, “
Mechanotransduction in Neuronal Cell Development and Functioning
,”
Biophys. Rev.
,
11
(
5
), pp.
701
720
.10.1007/s12551-019-00587-2
34.
Evans
,
N. D.
,
Oreffo
,
R. O. C.
,
Healy
,
E.
,
Thurner
,
P. J.
, and
Man
,
Y. H.
,
2013
, “
Epithelial Mechanobiology, Skin Wound Healing, and the Stem Cell Niche
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
397
409
.10.1016/j.jmbbm.2013.04.023
35.
Jung
,
H.-J.
,
Fisher
,
M. B.
, and
Woo
,
S. L.-Y.
,
2009
, “
Role of Biomechanics in the Understanding of Normal, Injured, and Healing Ligaments and Tendons
,”
BMC Sports Sci. Med. Rehabil.
,
1
(
1
), p.
9
.10.1186/1758-2555-1-9
36.
Fang
,
F.
, and
Lake
,
S. P.
,
2017
, “
Experimental Evaluation of Multiscale Tendon Mechanics
,”
J. Orthop. Res.
,
35
(
7
), pp.
1353
1365
.10.1002/jor.23488
37.
Mass
,
D. P.
, and
Tuel
,
R. J.
,
1991
, “
Intrinsic Healing of the Laceration Site in Human Superficialis Flexor Tendons In Vitro
,”
J. Hand Surg. Am.
,
16
(
1
), pp.
24
30
.10.1016/S0363-5023(10)80006-1
38.
Amiel
,
D.
,
Frank
,
C.
,
Harwood
,
F.
,
Fronek
,
J.
, and
Akeson
,
W.
,
1983
, “
Tendons and Ligaments: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
,
1
(
3
), pp.
257
265
.10.1002/jor.1100010305
39.
Lavagnino
,
M.
,
Wall
,
M. E.
,
Little
,
D.
,
Banes
,
A. J.
,
Guilak
,
F.
, and
Arnoczky
,
S. P.
,
2015
, “
Tendon Mechanobiology: Current Knowledge and Future Research Opportunities
,”
J. Orthop. Res.
,
33
(
6
), pp.
813
822
.10.1002/jor.22871
40.
Theodossiou
,
S. K.
,
Bozeman
,
A. L.
,
Burgett
,
N.
,
Brumley
,
M. R.
,
Swann
,
H. E.
,
Raveling
,
A. R.
,
Becker
,
J. J.
, and
Schiele
,
N. R.
,
2019
, “
Onset of Neonatal Locomotor Behavior and the Mechanical Development of Achilles and Tail Tendons
,”
J. Biomech.
,
96
, p.
109354
10.1016/j.jbiomech.2019.109354
41.
Fang
,
F.
, and
Lake
,
S. P.
,
2015
, “
Multiscale Strain Analysis of Tendon Subjected to Shear and Compression Demonstrates Strain Attenuation, Fiber Sliding, and Reorganization
,”
J. Orthop. Res.
,
33
(
11
), pp.
1704
1712
.10.1002/jor.22955
42.
van Gils
,
C. C.
,
Steed
,
R. H.
, and
Page
,
J. C.
,
1996
, “
Torsion of the Human Achilles Tendon
,”
J. Foot Ankle Surg.
,
35
(
1
), pp.
41
48
.10.1016/S1067-2516(96)80011-1
43.
Kannus
,
P.
,
2000
, “
Structure of the Tendon Connective Tissue
,”
Scand. J. Med. Sci. Sport.
,
10
(
6
), pp.
312
320
.10.1034/j.1600-0838.2000.010006312.x
44.
Docking
,
S.
,
Samiric
,
T.
,
Scase
,
E.
,
Purdam
,
C.
, and
Cook
,
J.
,
2019
, “
Relationship Between Compressive Loading and ECM Changes in Tendons Muscles
,”
Ligaments Tendons J.
,
03
(
01
), pp.
7
11
.10.32098/mltj.01.2013.03
45.
Zitnay
,
J. L.
, and
Weiss
,
J. A.
,
2018
, “
Load Transfer, Damage, and Failure in Ligaments and Tendons
,”
J. Orthop. Res.
,
36
(
12
), pp.
3093
3104
.10.1002/jor.24134
46.
Galloway
,
M. T.
,
Lalley
,
A. L.
, and
Shearn
,
J. T.
,
2013
, “
The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair
,”
J. Bone Jt. Surg.-Am.
,
95
(
17
), pp.
1620
1628
.10.2106/JBJS.L.01004
47.
Ruberti
,
J. W.
, and
Hallab
,
N. J.
,
2005
, “
Strain-Controlled Enzymatic Cleavage of Collagen in Loaded Matrix
,”
Biochem. Biophys. Res. Commun.
,
336
(
2
), pp.
483
489
.10.1016/j.bbrc.2005.08.128
48.
Valdivia
,
M.
,
Vega-Macaya
,
F.
, and
Olguín
,
P.
,
2017
, “
Mechanical Control of Myotendinous Junction Formation and Tendon Differentiation During Development,” Front
,”
Cell Dev. Biol.
,
5
, p.
26
10.3389/fcell.2017.00026
49.
Thomopoulos
,
S.
,
Kim
,
H.-M.
,
Rothermich
,
S. Y.
,
Biederstadt
,
C.
,
Das
,
R.
, and
Galatz
,
L. M.
,
2007
, “
Decreased Muscle Loading Delays Maturation of the Tendon Enthesis During Postnatal Development
,”
J. Orthop. Res.
,
25
(
9
), pp.
1154
1163
.10.1002/jor.20418
50.
Wren
,
T. A.
,
Beaupré
,
G. S.
, and
Carter
,
D. R.
,
2000
, “
Tendon and Ligament Adaptation to Exercise, Immobilization, and Remobilization
,”
J. Rehabil. Res. Dev.
,
37
(
2
), pp.
217
–2
24
.https://pubmed.ncbi.nlm.nih.gov/10850828/
51.
Kjær
,
M.
,
2004
, “
Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading
,”
Physiol. Rev.
,
84
(
2
), pp.
649
698
.10.1152/physrev.00031.2003
52.
Murrell
,
G. A. C.
,
Lilly
,
E. G.
,
Goldner
,
R. D.
,
Seaber
,
A. V.
, and
Best
,
T. M.
,
1994
, “
Effects of Immobilization on Achilles Tendon Healing in a Rat Model
,”
J. Orthop. Res.
,
12
(
4
), pp.
582
591
.10.1002/jor.1100120415
53.
Pan
,
X. S.
,
Li
,
J.
,
Brown
,
E. B.
, and
Kuo
,
C. K.
,
2018
, “
Embryo Movements Regulate Tendon Mechanical Property Development
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
373
(
1759
), p.
20170325
.10.1098/rstb.2017.0325
54.
Hitchcock
,
T. F.
,
Light
,
T. R.
,
Bunch
,
W. H.
,
Knight
,
G. W.
,
Sartori
,
M. J.
,
Patwardhan
,
A. G.
, and
Hollyfield
,
R. L.
,
1987
, “
The Effect of Immediate Constrained Digital Motion on the Strength of Flexor Tendon Repairs in Chickens
,”
J. Hand Surg. Am.
,
12
(
4
), pp.
590
595
.10.1016/S0363-5023(87)80213-7
55.
Banes
,
A. J.
,
Horesovsky
,
G.
,
Larson
,
C.
,
Tsuzaki
,
M.
,
Judex
,
S.
,
Archambault
,
J.
,
Zernicke
,
R.
,
Herzog
,
W.
,
Kelley
,
S.
, and
Miller
,
L.
,
1999
, “
Mechanical Load Stimulates Expression of Novel Genes In Vivo and In Vitro in Avian Flexor Tendon Cells
,”
Osteoarthr. Cartil.
,
7
(
1
), pp.
141
153
.10.1053/joca.1998.0169
56.
Herod
,
T. W.
, and
Veres
,
S. P.
,
2018
, “
Development of Overuse Tendinopathy: A New Descriptive Model for the Initiation of Tendon Damage During Cyclic Loading
,”
J. Orthop. Res.
,
36
(
1
), pp.
467
476
.10.1002/jor.23629
57.
Andarawis-Puri
,
N.
,
Flatow
,
E. L.
, and
Soslowsky
,
L. J.
,
2015
, “
Tendon Basic Science: Development, Repair, Regeneration, and Healing
,”
J. Orthop. Res.
,
33
(
6
), pp.
780
784
.10.1002/jor.22869
58.
Lemke
,
S. B.
, and
Schnorrer
,
F.
,
2017
, “
Mechanical Forces During Muscle Development
,”
Mech. Dev.
,
144
(
Pt A
), pp.
92
101
.10.1016/j.mod.2016.11.003
59.
Klumpp
,
D.
,
Horch
,
R. E.
, and
Beier
,
J. P., 2014,
Skeletal Muscle Tissue Engineering,
A. R. Boccaccini, and P. X. Ma, eds.,
Tissue Eng. Using Ceram. Polym
, 2nd ed., Woodhead Publishing, Cambridge, UK.10.1533/9780857097163.3.524
60.
Bickel
,
C. S.
,
Gregory
,
C. M.
, and
Dean
,
J. C.
,
2011
, “
Motor Unit Recruitment During Neuromuscular Electrical Stimulation: A Critical Appraisal
,”
Eur. J. Appl. Physiol.
,
111
(
10
), pp.
2399
2407
.10.1007/s00421-011-2128-4
61.
Holcomb
,
W. R.
,
1997
, “
A Practical Guide to Electrical Therapy
,”
J. Sport Rehabil.
,
6
(
3
), pp.
272
282
.10.1123/jsr.6.3.272
62.
Sieiro-Mosti
,
D.
,
De La Celle
,
M.
,
Pele
,
M.
, and
Marcelle
,
C.
,
2014
, “
A Dynamic Analysis of Muscle Fusion in the Chick Embryo
,”
Development
,
141
(
18
), pp.
3605
3611
.10.1242/dev.114546
63.
Gregory
,
C. M.
, and
Bickel
,
C. S.
,
2005
, “
Recruitment Patterns in Human Skeletal Muscle During Electrical Stimulation
,”
Phys. Ther.
,
85
(
4
), pp.
358
364
.10.1093/ptj/85.4.358
64.
Bruegmann
,
T.
,
van Bremen
,
T.
,
Vogt
,
C. C.
,
Send
,
T.
,
Fleischmann
,
B. K.
, and
Sasse
,
P.
,
2015
, “
Optogenetic Control of Contractile Function in Skeletal Muscle
,”
Nat. Commun.
,
6
(
1
), p.
7153
.10.1038/ncomms8153
65.
Ganji
,
E.
,
Chan
,
C. S.
,
Ward
,
C. W.
, and
Killian
,
M. L.
,
2021
, “
Optogenetic Activation of Muscle Contraction In Vivo
,”
Connect. Tissue Res.
, 62(
1
), pp.
1
9
.10.1080/03008207.2020.1798943
66.
Hildebrand
,
K. A.
, and
Frank
,
C. B.
,
1998
, “
Scar Formation and Ligament Healing
,”
Can. J. Surg.
,
41
(
6
), pp.
425
–42
9
. https://pubmed.ncbi.nlm.nih.gov/9854530/
67.
Huisman
,
E.
,
Lu
,
A.
,
McCormack
,
R. G.
, and
Scott
,
A.
,
2014
, “
Enhanced Collagen Type I Synthesis by Human Tenocytes Subjected to Periodic In Vitro Mechanical Stimulation
,”
BMC Musculoskelet. Disord.
,
15
(
1
), p.
386
.10.1186/1471-2474-15-386
68.
Maeda
,
E.
, and
Ohashi
,
T.
,
2015
, “
Mechano-Regulation of Gap Junction Communications Between Tendon Cells is Dependent on the Magnitude of Tensile Strain
,”
Biochem. Biophys. Res. Commun.
,
465
(
2
), pp.
281
286
.10.1016/j.bbrc.2015.08.021
69.
Kalson
,
N. S.
,
Holmes
,
D. F.
,
Kapacee
,
Z.
,
Otermin
,
I.
,
Lu
,
Y.
,
Ennos
,
R. A.
,
Canty-Laird
,
E. G.
, and
Kadler
,
K. E.
,
2010
, “
An Experimental Model for Studying the Biomechanics of Embryonic Tendon: Evidence That the Development of Mechanical Properties Depends on the Actinomyosin Machinery
,”
Matrix Biol.
,
29
(
8
), pp.
678
689
.10.1016/j.matbio.2010.08.009
70.
Giannopoulos
,
A.
,
Svensson
,
R. B.
,
Heinemeier
,
K. M.
,
Schjerling
,
P.
,
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Kjaer
,
M.
, and
Magnusson
,
S. P.
,
2018
, “
Cellular Homeostatic Tension and Force Transmission Measured in Human Engineered Tendon
,”
J. Biomech.
,
78
, pp.
161
165
.10.1016/j.jbiomech.2018.07.032
71.
Bayer
,
M. L.
,
Schjerling
,
P.
,
Herchenhan
,
A.
,
Zeltz
,
C.
,
Heinemeier
,
K. M.
,
Christensen
,
L.
,
Krogsgaard
,
M.
,
Gullberg
,
D.
, and
Kjaer
,
M.
,
2014
, “
Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype
,”
PLoS One
,
9
(
1
), p.
e86078
10.1371/journal.pone.0086078
72.
Kalson
,
N. S.
,
Holmes
,
D. F.
,
Herchenhan
,
A.
,
Lu
,
Y.
,
Starborg
,
T.
, and
Kadler
,
K. E.
,
2011
, “
Slow Stretching That Mimics Embryonic Growth Rate Stimulates Structural and Mechanical Development of Tendon-Like Tissue In Vitro
,”
Dev. Dyn.
,
240
(
11
), pp.
2520
2528
.10.1002/dvdy.22760
73.
Altman
,
G. H.
,
Horan
,
R. L.
,
Martin
,
I.
,
Farhadi
,
J.
,
Stark
,
P. R. H.
,
Volloch
,
V.
,
Richmond
,
J. C.
,
Vunjak-Novakovic
,
G.
, and
Kaplan
,
D. L.
,
2002
, “
Cell Differentiation by Mechanical Stress
,”
Faseb J.
,
16
(
2
), pp.
1
13
.10.1096/fj.01-0656fje
74.
Butler
,
D. L.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Shearn
,
J. T.
,
Gooch
,
C.
, and
Awad
,
H.
,
2008
, “
Functional Tissue Engineering for Tendon Repair: A Multidisciplinary Strategy Using Mesenchymal Stem Cells, Bioscaffolds, and Mechanical Stimulation
,”
J. Orthop. Res.
,
26
(
1
), pp.
1
9
.10.1002/jor.20456
75.
Chen
,
G.
,
Ushida
,
T.
, and
Tateishi
,
T.
,
2002
, “
Scaffold Design for Tissue Engineering
,”
Macromol. Biosci.
,
2
(
2
), pp.
67
77
.10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
76.
Chen
,
J. L.
,
Yin
,
Z.
,
Shen
,
W. L.
,
Chen
,
X.
,
Heng
,
B. C.
,
Zou
,
X. H.
, and
Ouyang
,
H. W.
,
2010
, “
Efficacy of HESC-MSCs in Knitted Silk-Collagen Scaffold for Tendon Tissue Engineering and Their Roles
,”
Biomaterials
,
31
(
36
), pp.
9438
9451
.10.1016/j.biomaterials.2010.08.011
77.
Gilbert
,
T. W.
,
Stewart-Akers
,
A. M.
,
Sydeski
,
J.
,
Nguyen
,
T. D.
,
Badylak
,
S. F.
, and
Woo
,
S. L.-Y.
,
2007
, “
Gene Expression by Fibroblasts Seeded on Small Intestinal Submucosa and Subjected to Cyclic Stretching
,”
Tissue Eng.
,
13
(
6
), pp.
1313
1323
.10.1089/ten.2006.0318
78.
Androjna
,
C.
,
Spragg
,
R. K.
, and
Derwin
,
K. A.
,
2007
, “
Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa: A Potential Tissue-Engineering Strategy for Tendon Repair
,”
Tissue Eng.
,
13
(
2
), pp.
233
243
.10.1089/ten.2006.0050
79.
Angelidis
,
I. K.
,
Thorfinn
,
J.
,
Connolly
,
I. D.
,
Lindsey
,
D.
,
Pham
,
H. M.
, and
Chang
,
J.
,
2010
, “
Tissue Engineering of Flexor Tendons: The Effect of a Tissue Bioreactor on Adipoderived Stem Cell–Seeded and Fibroblast-Seeded Tendon Constructs
,”
J. Hand Surg. Am.
,
35
(
9
), pp.
1466
1472
.10.1016/j.jhsa.2010.06.020
80.
Lee
,
K. I.
,
Lee
,
J. S.
,
Kang
,
K. T.
,
Shim
,
Y. B.
,
Kim
,
Y. S.
,
Jang
,
J. W.
,
Moon
,
S. H.
, and
D'Lima
,
D. D.
,
2018
, “
In Vitro and In Vivo Performance of Tissue-Engineered Tendons for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
46
(
7
), pp.
1641
1649
.10.1177/0363546518759729
81.
Banes
,
A. J.
,
Gilbert
,
J.
,
Taylor
,
D.
, and
Monbureau
,
O.
,
1985
, “
A New Vacuum-Operated Stress-Providing Instrument That Applies Static or Variable Duration Cyclic Tension or Compression to Cells In Vitro
,”
J. Cell Sci.
,
75
, pp.
35
42
.https://pubmed.ncbi.nlm.nih.gov/3900107/
82.
Garvin
,
J.
,
Qi
,
J.
,
Maloney
,
M.
, and
Banes
,
A. J.
,
2003
, “
Novel System for Engineering Bioartificial Tendons and Application of Mechanical Load
,”
Tissue Eng.
,
9
(
5
), pp.
967
979
.10.1089/107632703322495619
83.
Kuo
,
C. K.
, and
Tuan
,
R. S.
,
2008
, “
Mechanoactive Tenogenic Differentiation of Human Mesenchymal Stem Cells
,”
Tissue Eng. Part A
,
14
(
10
), pp.
1615
1627
.10.1089/ten.tea.2006.0415
84.
Raveling
,
A. R.
,
Theodossiou
,
S. K.
, and
Schiele
,
N. R.
,
2018
, “
A 3D Printed Mechanical Bioreactor for Investigating Mechanobiology and Soft Tissue Mechanics
,”
MethodsX
,
5
, pp.
924
932
.10.1016/j.mex.2018.08.001
85.
Ni
,
M.
,
Rui
,
Y. F.
,
Tan
,
Q.
,
Liu
,
Y.
,
Xu
,
L. L.
,
Chan
,
K. M.
,
Wang
,
Y.
, and
Li
,
G.
,
2013
, “
Engineered Scaffold-Free Tendon Tissue Produced by Tendon-Derived Stem Cells
,”
Biomaterials
,
34
(
8
), pp.
2024
2037
.10.1016/j.biomaterials.2012.11.046
86.
Hasegawa
,
M.
,
Yamato
,
M.
,
Kikuchi
,
A.
,
Okano
,
T.
, and
Ishikawa
,
I.
,
2005
, “
Human Periodontal Ligament Cell Sheets Can Regenerate Periodontal Ligament Tissue in an Athymic Rat Model
,”
Tissue Eng.
,
11
(
3–4
), pp.
469
478
.10.1089/ten.2005.11.469
87.
Larkin
,
L. M.
,
Calve
,
S.
,
Kostrominova
,
T. Y.
, and
Arruda
,
E. M.
,
2006
, “
Structure and Functional Evaluation of Tendon–Skeletal Muscle Constructs Engineered In Vitro
,”
Tissue Eng.
,
12
(
11
), pp.
3149
3158
.10.1089/ten.2006.12.3149
88.
Ma
,
J.
,
Smietana
,
M. J.
,
Kostrominova
,
T. Y.
,
Wojtys
,
E. M.
,
Larkin
,
L. M.
, and
Arruda
,
E. M.
,
2012
, “
Three-Dimensional Engineered Bone–Ligament–Bone Constructs for Anterior Cruciate Ligament Replacement
,”
Tissue Eng. Part A
,
18
(
1–2
), pp.
103
116
.10.1089/ten.tea.2011.0231
89.
Schiele
,
N. R.
,
Koppes
,
R. A.
,
Chrisey
,
D. B.
, and
Corr
,
D. T.
,
2013
, “
Engineering Cellular Fibers for Musculoskeletal Soft Tissues Using Directed Self-Assembly
,”
Tissue Eng. Part A
,
19
(
9–10
), pp.
1223
1232
.10.1089/ten.tea.2012.0321
90.
Mubyana
,
K.
, and
Corr
,
D. T.
,
2018
, “
Cyclic Uniaxial Tensile Strain Enhances the Mechanical Properties of Engineered, Scaffold-Free Tendon Fibers
,”
Tissue Eng. Part A
,
24
(
23–24
), pp.
1808
1817
.10.1089/ten.tea.2018.0028
91.
Hugenberg
,
N. R.
,
Dong
,
L.
,
Cooper
,
J. A.
,
Corr
,
D. T.
, and
Oberai
,
A. A.
,
2020
, “
Characterization of Spatially Graded Biomechanical Scaffolds
,”
ASME J. Biomech. Eng.
,
142
(
7
), p.
071010
.10.1115/1.4045905
92.
Patel
,
S.
,
Caldwell
,
J.-M.
,
Doty
,
S. B.
,
Levine
,
W. N.
,
Rodeo
,
S.
,
Soslowsky
,
L. J.
,
Thomopoulos
,
S.
, and
Lu
,
H. H.
,
2018
, “
Integrating Soft and Hard Tissues Via Interface Tissue Engineering
,”
J. Orthop. Res.
,
36
(
4
), pp.
1069
1077
.10.1002/jor.23810
93.
Wu
,
X.
,
Corona
,
B. T.
,
Chen
,
X.
, and
Walters
,
T. J.
,
2012
, “
A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies
,”
Biores. Open Access
,
1
(
6
), pp.
280
290
.10.1089/biores.2012.0271
94.
Okano
,
T.
, and
Matsuda
,
T.
,
1998
, “
Tissue Engineered Skeletal Muscle: Preparation of Highly Dense, Highly Oriented Hybrid Muscular Tissues
,”
Cell Transplant.
,
7
(
1
), pp.
71
82
.10.1177/096368979800700110
95.
Heher
,
P.
,
Maleiner
,
B.
,
Prüller
,
J.
,
Teuschl
,
A. H.
,
Kollmitzer
,
J.
,
Monforte
,
X.
,
Wolbank
,
S.
,
Redl
,
H.
,
Rünzler
,
D.
, and
Fuchs
,
C.
,
2015
, “
A Novel Bioreactor for the Generation of Highly Aligned 3D Skeletal Muscle-Like Constructs Through Orientation of Fibrin Via Application of Static Strain
,”
Acta Biomater.
,
24
, pp.
251
265
.10.1016/j.actbio.2015.06.033
96.
Van Houten
,
S. K.
,
Bramson
,
M. T. K.
, and
Corr
,
D. T.
,
2021
, “
A Bioreactor for Controlled Electromechanical Stiumulation of Developing Scaffold-Free Constructs
,”
bioRxiv
, ePub.10.1101/2021.01.10.426136
97.
Deisseroth
,
K.
,
2011
, “
Optogenetics
,”
Nat. Methods
,
8
(
1
), pp.
26
29
.10.1038/nmeth.f.324
98.
Qazi
,
T. H.
,
Mooney
,
D. J.
,
Pumberger
,
M.
,
Geißler
,
S.
, and
Duda
,
G. N.
,
2015
, “
Biomaterials Based Strategies for Skeletal Muscle Tissue Engineering: Existing Technologies and Future Trends
,”
Biomaterials
,
53
, pp.
502
521
.10.1016/j.biomaterials.2015.02.110
99.
Lim
,
J. Y.
, and
Donahue
,
H. J.
,
2007
, “
Cell Sensing and Response to Micro- and Nanostructured Surfaces Produced by Chemical and Topographic Patterning
,”
Tissue Eng.
,
13
(
8
), pp.
1879
1891
.10.1089/ten.2006.0154
100.
Auluck
,
A.
,
Mudera
,
V.
,
Hunt
,
N. P.
, and
Lewis
,
M. P.
,
2005
, “
A Three-Dimensional In Vitro Model System to Study the Adaptation of Craniofacial Skeletal Muscle Following Mechanostimulation
,”
Eur. J. Oral Sci.
,
113
(
3
), pp.
218
224
.10.1111/j.1600-0722.2005.00215.x
101.
Ahmed
,
W. W.
,
Wolfram
,
T.
,
Goldyn
,
A. M.
,
Bruellhoff
,
K.
,
Rioja
,
B. A.
,
Möller
,
M.
,
Spatz
,
J. P.
,
Saif
,
T. A.
,
Groll
,
J.
, and
Kemkemer
,
R.
,
2010
, “
Myoblast Morphology and Organization on Biochemically Micro-Patterned Hydrogel Coatings Under Cyclic Mechanical Strain
,”
Biomaterials
,
31
(
2
), pp.
250
258
.10.1016/j.biomaterials.2009.09.047
102.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS One
,
4
(
6
), p.
e5902
10.1371/journal.pone.0005902
103.
Aguilar-Agon
,
K. W.
,
Capel
,
A. J.
,
Martin
,
N. R. W.
,
Player
,
D. J.
, and
Lewis
,
M. P.
,
2019
, “
Mechanical Loading Stimulates Hypertrophy in Tissue‐Engineered Skeletal Muscle: Molecular and Phenotypic Responses
,”
J. Cell. Physiol.
,
234
(
12
), pp.
23547
23558
.10.1002/jcp.28923
104.
Powell
,
C. A.
,
Smiley
,
B. L.
,
Mills
,
J.
, and
Vandenburgh
,
H. H.
,
2002
, “
Mechanical Stimulation Improves Tissue-Engineered Human Skeletal Muscle
,”
Am. J. Physiol. - Cell Physiol.
,
283
(
5
), pp.
52
–5
5
.10.1152/ajpcell.00595.2001
105.
Pennisi
,
C. P.
,
Olesen
,
C. G.
,
de Zee
,
M.
,
Rasmussen
,
J.
, and
Zachar
,
V.
,
2011
, “
Uniaxial Cyclic Strain Drives Assembly and Differentiation of Skeletal Myocytes
,”
Tissue Eng. Part A
,
17
(
19–20
), pp.
2543
2550
.10.1089/ten.tea.2011.0089
106.
Somers
,
S. M.
,
Spector
,
A. A.
,
DiGirolamo
,
D. J.
, and
Grayson
,
W. L.
,
2017
, “
Biophysical Stimulation for Engineering Functional Skeletal Muscle
,”
Tissue Eng. Part B Rev.
,
23
(
4
), pp.
362
372
.10.1089/ten.teb.2016.0444
107.
Beldjilali-Labro
,
M.
,
Garcia Garcia
,
A.
,
Farhat
,
F.
,
Bedoui
,
F.
,
Grosset
,
J.-F.
,
Dufresne
,
M.
, and
Legallais
,
C.
,
2018
, “
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges
,”
Materials (Basel)
,
11
(
7
), p.
1116
.10.3390/ma11071116
108.
Williams
,
M. L.
,
Kostrominova
,
T. Y.
,
Arruda
,
E. M.
, and
Larkin
,
L. M.
,
2013
, “
Effect of Implantation on Engineered Skeletal Muscle Constructs
,”
J. Tissue Eng. Regen. Med.
,
7
(
6
), pp.
434
442
.10.1002/term.537
109.
Novakova
,
S. S.
,
Rodriguez
,
B. L.
,
Vega-Soto
,
E. E.
,
Nutter
,
G. P.
,
Armstrong
,
R. E.
,
Macpherson
,
P. C. D.
, and
Larkin
,
L. M.
,
2020
, “
Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery
,”
Tissue Eng. Part A
,
26
(
15–16
), pp.
837
851
.10.1089/ten.tea.2019.0288
110.
Koppes
,
R. A.
,
2013
, “
Dynamic Skeletal Muscle Contraction and Tissue Engineering: Using Drosophila Melangastor as a Genetically Manipulable Experimental Model Species to Investigate the Role of Myosin in the Underlying Mechanisms of Force Depression and Force Enhancement, and the Development of a Electromechanical Bioreactor for Tissue Engineering of Single Fiber Mammalian Skeletal Muscle
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
,
Troy, NY
.
111.
Boonen
,
K. J. M.
,
Langelaan
,
M. L. P.
,
Polak
,
R. B.
,
van der Schaft
,
D. W. J.
,
Baaijens
,
F. P. T.
, and
Post
,
M. J.
,
2010
, “
Effects of a Combined Mechanical Stimulation Protocol: Value for Skeletal Muscle Tissue Engineering
,”
J. Biomech.
,
43
(
8
), pp.
1514
1521
.10.1016/j.jbiomech.2010.01.039
112.
Serena
,
E.
,
Flaibani
,
M.
,
Carnio
,
S.
,
Boldrin
,
L.
,
Vitiello
,
L.
,
De Coppi
,
P.
, and
Elvassore
,
N.
,
2008
, “
Electrophysiologic Stimulation Improves Myogenic Potential of Muscle Precursor Cells Grown in a 3D Collagen Scaffold
,”
Neurol. Res.
,
30
(
2
), pp.
207
214
.10.1179/174313208X281109
113.
Cvetkovic
,
C.
,
Raman
,
R.
,
Chan
,
V.
,
Williams
,
B. J.
,
Tolish
,
M.
,
Bajaj
,
P.
,
Sakar
,
M. S.
,
Asada
,
H. H.
,
Saif
,
M. T. A.
, and
Bashir
,
R.
,
2014
, “
Three-Dimensionally Printed Biological Machines Powered by Skeletal Muscle
,”
Proc. Natl. Acad. Sci.
,
111
(
28
), pp.
10125
10130
.10.1073/pnas.1401577111
114.
Ahadian
,
S.
,
Ramón-Azcón
,
J.
,
Ostrovidov
,
S.
,
Camci-Unal
,
G.
,
Kaji
,
H.
,
Ino
,
K.
,
Shiku
,
H.
,
Khademhosseini
,
A.
, and
Matsue
,
T.
,
2013
, “
A Contactless Electrical Stimulator: Application to Fabricate Functional Skeletal Muscle Tissue
,”
Biomed. Microdev.
,
15
(
1
), pp.
109
115
.10.1007/s10544-012-9692-1
115.
Stern-Straeter
,
J.
,
Bach
,
A. D.
,
Stangenberg
,
L.
,
Foerster
,
V. T.
,
Horch
,
R. E.
,
Stark
,
G. B.
, and
Beier
,
J. P.
,
2005
, “
Impact of Electrical Stimulation on Three-Dimensional Myoblast Cultures - a Real-Time RT-PCR Study
,”
J. Cell. Mol. Med.
,
9
(
4
), pp.
883
892
.10.1111/j.1582-4934.2005.tb00386.x
116.
Liao
,
I.-C.
,
Liu
,
J. B.
,
Bursac
,
N.
, and
Leong
,
K. W.
,
2008
, “
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers
,”
Cell. Mol. Bioeng.
,
1
(
2–3
), pp.
133
145
.10.1007/s12195-008-0021-y
117.
Cole
,
K.
,
Henano
,
N.
,
Miller
,
T.
, and
Pawelski
,
K.
, “
Mechanical and Electrical Stimulation Device for the Creation of a Functional Unit of Human Skeletal Muscle In Vitro
,”
Major Qualifying Project
,
Worcester Polytechnic Institute
,
Worcester, MA
.
118.
Thomopoulos
,
S.
,
Genin
,
G. M.
, and
Galatz
,
L. M.
,
2010
, “
The Development and Morphogenesis of the Tendon-to-Bone Insertion - What Development Can Teach Us About Healing
,”
J. Musculoskelet. Neuronal Interact.
,
10
(
1
), pp.
35
45
. https://pubmed.ncbi.nlm.nih.gov/20190378/
119.
Bayrak
,
E.
, and
Yilgor Huri
,
P.
,
2018
, “
Engineering Musculoskeletal Tissue Interfaces
,”
Front. Mater.
,
5
(
24
)10.3389/fmats.2018.00024
120.
Baldino
,
L.
,
Cardea
,
S.
,
Maffulli
,
N.
, and
Reverchon
,
E.
,
2016
, “
Regeneration Techniques for Bone-to-Tendon and Muscle-to-Tendon Interfaces Reconstruction
,”
Br. Med. Bull.
,
117
(
1
), pp.
25
37
.10.1093/bmb/ldv056
121.
Kostrominova
,
T. Y.
,
Calve
,
S.
,
Arruda
,
E. M.
, and
Larkin
,
L. M.
,
2009
, “
Ultrastructure of Myotendinous Junctions in Tendon-Skeletal Muscle Constructs Engineered In Vitro
,”
Histol. Histopathol.
,
24
(
5
), pp.
541
550
.10.14670/HH-24.541
122.
Tarafder
,
S.
,
Koch
,
A.
,
Jun
,
Y.
,
Chou
,
C.
,
Awadallah
,
M. R.
, and
Lee
,
C. H.
,
2016
, “
Micro-Precise Spatiotemporal Delivery System Embedded in 3D Printing for Complex Tissue Regeneration
,”
Biofabrication
,
8
(
2
), p.
025003
.10.1088/1758-5090/8/2/025003
123.
Cao
,
Y.
,
Yang
,
S.
,
Zhao
,
D.
,
Li
,
Y.
,
Cheong
,
S. S.
,
Han
,
D.
, and
Li
,
Q.
,
2020
, “
Three-Dimensional Printed Multiphasic Scaffolds With Stratified Cell-Laden Gelatin Methacrylate Hydrogels for Biomimetic Tendon-to-Bone Interface Engineering
,”
J. Orthop. Transl
,.
23
, pp.
89
100
.10.1016/j.jot.2020.01.004
124.
Novakova
,
S. S.
,
Mahalingam
,
V. D.
,
Florida
,
S. E.
,
Mendias
,
C. L.
,
Allen
,
A.
,
Arruda
,
E. M.
,
Bedi
,
A.
, and
Larkin
,
L. M.
,
2018
, “
Tissue-Engineered Tendon Constructs for Rotator Cuff Repair in Sheep
,”
J Orthop Res
,
36
(
1
), pp.
289
299
.10.1002/jor.23642
125.
Rao
,
L.
,
Qian
,
Y.
,
Khodabukus
,
A.
,
Ribar
,
T.
, and
Bursac
,
N.
,
2018
, “
Engineering Human Pluripotent Stem Cells Into a Functional Skeletal Muscle Tissue
,”
Nat. Commun.
,
9
(
1
), p.
126
.10.1038/s41467-017-02636-4
126.
Spalazzi
,
J. P.
,
Dagher
,
E.
,
Doty
,
S. B.
,
Guo
,
X. E.
,
Rodeo
,
S. A.
, and
Lu
,
H. H.
,
2008
, “
In Vivo Evaluation of a Multiphased Scaffold Designed for Orthopaedic Interface Tissue Engineering and Soft Tissue-to-Bone Integration
,”
J. Biomed. Mater. Res. Part A
,
86A
(
1
), pp.
1
12
.10.1002/jbm.a.32073
127.
Li
,
X.
,
Xie
,
J.
,
Lipner
,
J.
,
Yuan
,
X.
,
Thomopoulos
,
S.
, and
Xia
,
Y.
,
2009
, “
Nanofiber Scaffolds With Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site
,”
Nano Lett.
,
9
(
7
), pp.
2763
2768
.10.1021/nl901582f
128.
Chamberlain
,
C. S.
,
Clements
,
A. E. B.
,
Kink
,
J. A.
,
Choi
,
U.
,
Baer
,
G. S.
,
Halanski
,
M. A.
,
Hematti
,
P.
, and
Vanderby
,
R.
,
2019
, “
Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing
,”
Stem Cells
,
37
(
5
), pp.
652
662
.10.1002/stem.2988
129.
Nakamura
,
Y.
,
Miyaki
,
S.
,
Ishitobi
,
H.
,
Matsuyama
,
S.
,
Nakasa
,
T.
,
Kamei
,
N.
,
Akimoto
,
T.
,
Higashi
,
Y.
, and
Ochi
,
M.
,
2015
, “
Mesenchymal-Stem-Cell-Derived Exosomes Accelerate Skeletal Muscle Regeneration
,”
FEBS Lett.
,
589
(
11
), pp.
1257
1265
.10.1016/j.febslet.2015.03.031
You do not currently have access to this content.