Abstract

This technical brief explores the validity and trueness of fit for using the transverse isotropic biphasic and Kelvin models (first and second order generalized) for characterization of the viscoelastic tensile properties of the temporomandibular joint (TMJ) discs from pigs and goats at a strain rate of 10 mm/min. We performed incremental stress-relaxation tests from 0 to 12% strain, in 4% strain steps on pig TMJ disc samples. In addition, to compare the outcomes of these models between species, we also performed a single-step stress-relaxation test of 10% strain. The transverse isotropic biphasic model yielded reliable fits in reference to the least root mean squared error method only at low strain, while the Kelvin models yielded good fits at both low and high strain, with the second order generalized Kelvin model yielding the best fit. When comparing pig to goat TMJ disc in 10% strain stress-relaxation test, unlike the other two Kelvin models, the transverse isotropic model did not fit well for this larger step. In conclusion, the second order Kelvin model showed the best fits to the experimental data of both species. The transverse isotropic biphasic model did not fit well with the experimental data, although better at low strain, suggesting that the assumption of water flow only applies while uncrimping the collagen fibers. Thus, it is likely that the permeability from the biphasic model is not truly representative, and other biphasic models, such as the poroviscoelastic model, would likely yield more meaningful outputs and should be explored in future works.

References

1.
Kang
,
H.
,
Bao
,
G. J.
, and
Qi
,
S. N.
,
2006
, “
Biomechanical Responses of Human Temporomandibular Joint Disc Under Tension and Compression
,”
Int. J. Oral. Maxillofac. Surg.
,
35
(
9
), pp.
817
821
.10.1016/j.ijom.2006.03.005
2.
Ortun-Terrazas
,
J.
,
Cegonino
,
J.
, and
Perez Del Palomar
,
A.
,
2020
, “
Computational Characterization of the Porous-Fibrous Behavior of the Soft Tissues in the Temporomandibular Joint
,”
J. Biomed. Mater. Res. B
,
108
(
5
), pp.
2204
2217
.10.1002/jbm.b.34558
3.
Arzi
,
B.
,
Murphy
,
M. K.
,
Leale
,
D. M.
,
Vapniarsky-Arzi
,
N.
, and
Verstraete
,
F. J.
,
2015
, “
The Temporomandibular Joint of California Sea Lions (Zalophus Californianus): Part 1—Characterisation in Health and Disease
,”
Arch. Oral. Biol.
,
60
(
1
), pp.
208
215
.10.1016/j.archoralbio.2014.09.004
4.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
,
2003
, “
Tensile Properties of the Porcine Temporomandibular Joint Disc
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
558
565
.10.1115/1.1589778
5.
Kalpakci
,
K. N.
,
Willard
,
V. P.
,
Wong
,
M. E.
, and
Athanasiou
,
K. A.
,
2011
, “
An Interspecies Comparison of the Temporomandibular Joint Disc
,”
J. Dent. Res.
,
90
(
2
), pp.
193
198
.10.1177/0022034510381501
6.
Snider
,
G. R.
,
Lomakin
,
J.
,
Singh
,
M.
,
Gehrke
,
S. H.
, and
Detamore
,
M. S.
,
2008
, “
Regional Dynamic Tensile Properties of the TMJ Disc
,”
J. Dent Res.
,
87
(
11
), pp.
1053
1057
.10.1177/154405910808701112
7.
Tanaka
,
E.
,
Aoyama
,
J.
,
Tanaka
,
M.
,
Murata
,
H.
,
Hamada
,
T.
, and
Tanne
,
K.
,
2002
, “
Dynamic Properties of Bovine Temporomandibular Joint Disks Change With Age
,”
J. Dent Res.
,
81
(
9
), pp.
618
622
.10.1177/154405910208100908
8.
Tanaka
,
E.
,
Kawai
,
N.
,
Van Eijden
,
T.
,
Watanabe
,
M.
,
Hanaoka
,
K.
,
Nishi
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
,
2003
, “
Impulsive Compression Influences the Viscous Behavior of Porcine Temporomandibular Joint Disc
,”
Eur. J. Oral Sci.
,
111
(
4
), pp.
353
358
.10.1034/j.1600-0722.2003.00049.x
9.
Tanaka
,
E.
,
Rodrigo
,
D. P.
,
Miyawaki
,
Y.
,
Lee
,
K.
,
Yamaguchi
,
K.
, and
Tanne
,
K.
,
2000
, “
Stress Distribution in the Temporomandibular Joint Affected by Anterior Disc Displacement: A Three-Dimensional Analytic Approach With the Finite-Element Method
,”
J. Oral Rehabil.
,
27
(
9
), p.
754
.10.1046/j.1365-2842.2000.00597.x
10.
Tanaka
,
E.
,
Sasaki
,
A.
,
Tahmina
,
K.
,
Yamaguchi
,
K.
,
Mori
,
Y.
, and
Tanne
,
K.
,
2001
, “
Mechanical Properties of Human Articular Disk and Its Influence on TMJ Loading Studied With the Finite Element Method
,”
J. Oral Rehabil.
,
28
(
3
), pp.
273
279
.10.1111/j.1365-2842.2001.tb01699.x
11.
Tanaka
,
E.
,
Shibaguchi
,
T.
,
Tanaka
,
M.
, and
Tanne
,
K.
,
2000
, “
Viscoelastic Properties of the Human Temporomandibular Joint Disc in Patients With Internal Derangement
,”
J. Oral Maxillofac. Surg.
,
58
(
9
), pp.
997
1002
.10.1053/joms.2000.8743
12.
Vapniarsky
,
N.
,
Aryaei
,
A.
,
Arzi
,
B.
,
Hatcher
,
D. C.
,
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2017
, “
The Yucatan Minipig Temporomandibular Joint Disc Structure-Function Relationships Support Its Suitability for Human Comparative Studies
,”
Tissue Eng. Part C Methods
,
23
(
11
), pp.
700
709
.10.1089/ten.tec.2017.0149
13.
Wright
,
G. J.
,
Coombs
,
M. C.
,
Hepfer
,
R. G.
,
Damon
,
B. J.
,
Bacro
,
T. H.
,
Lecholop
,
M. K.
,
Slate
,
E. H.
, and
Yao
,
H.
,
2016
, “
Tensile Biomechanical Properties of Human Temporomandibular Joint Disc: Effects of Direction, Region and Sex
,”
J. Biomech.
,
49
(
16
), pp.
3762
3769
.10.1016/j.jbiomech.2016.09.033
14.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
,
2006
, “
Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
,
39
(
2
), pp.
312
322
.10.1016/j.jbiomech.2004.11.012
15.
Guerrero Cota
,
J. M.
,
Leale
,
D. M.
,
Arzi
,
B.
, and
Cissell
,
D. D.
,
2019
, “
Regional and Disease-Related Differences in Properties of the Equine Temporomandibular Joint Disc
,”
J. Biomech.
,
82
, pp.
54
61
.10.1016/j.jbiomech.2018.10.017
16.
Singh
,
M.
, and
Detamore
,
M. S.
,
2008
, “
Tensile Properties of the Mandibular Condylar Cartilage
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
11009
.10.1115/1.2838062
17.
Tanaka
,
E.
,
Hanaoka
,
K.
,
Tanaka
,
M.
,
Van Eijden
,
T.
,
Iwabe
,
T.
,
Ishino
,
Y.
,
Sasaki
,
A.
, and
Tanne
,
K.
,
2003
, “
Viscoelastic Properties of Bovine Retrodiscal Tissue Under Tensile Stress-Relaxation
,”
Eur. J. Oral Sci.
,
111
(
6
), pp.
518
522
.10.1111/j.0909-8836.2003.00081.x
18.
Tanaka
,
E.
,
Tanaka
,
M.
,
Aoyama
,
J.
,
Watanabe
,
M.
,
Hattori
,
Y.
,
Asai
,
D.
,
Iwabe
,
T.
,
Sasaki
,
A.
,
Sugiyama
,
M.
, and
Tanne
,
K.
,
2002
, “
Viscoelastic Properties and Residual Strain in a Tensile Creep Test on Bovine Temporomandibular Articular Discs
,”
Arch. Oral Biol.
,
47
(
2
), pp.
139
146
.10.1016/S0003-9969(01)00096-6
19.
Gutman
,
S.
,
Kim
,
D.
,
Tarafder
,
S.
,
Velez
,
S.
,
Jeong
,
J.
, and
Lee
,
C. H.
,
2018
, “
Regionally Variant Collagen Alignment Correlates With Viscoelastic Properties of the Disc of the Human Temporomandibular Joint
,”
Arch. Oral Biol.
,
86
, pp.
1
6
.10.1016/j.archoralbio.2017.11.002
20.
Lomakin
,
J.
,
Sprouse
,
P. A.
,
Detamore
,
M. S.
, and
Gehrke
,
S. H.
,
2014
, “
Effect of Pre-Stress on the Dynamic Tensile Behavior of the TMJ Disc
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011001
.10.1115/1.4025775
21.
Koolstra
,
J. H.
, and
Tanaka
,
E.
,
2009
, “
Tensile Stress Patterns Predicted in the Articular Disc of the Human Temporomandibular Joint
,”
J. Anat.
,
215
(
4
), pp.
411
416
.10.1111/j.1469-7580.2009.01127.x
22.
Hagandora
,
C. K.
,
Chase
,
T. W.
, and
Almarza
,
A. J.
,
2011
, “
A Comparison of the Mechanical Properties of the Goat Temporomandibular Joint Disc to the Mandibular Condylar Cartilage in Unconfined Compression
,”
J. Dent Biomech.
,
2011
, pp.
205
206
.10.1115/SBC2011-53173
23.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
(
10
), pp.
1125
1130
.10.1016/S0021-9290(99)00105-0
24.
Hatami-Marbini
,
H.
, and
Maulik
,
R.
,
2016
, “
A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
4032059
.10.1115/1.4032059
25.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
491
496
.10.1115/1.2798019
26.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media, Berlin
.
27.
Lowe
,
J.
,
Bansal
,
R.
,
Badylak
,
S.
,
Brown
,
B.
,
Chung
,
W.
, and
Almarza
,
A.
,
2018
, “
Properties of the Temporomandibular Joint in Growing Pigs
,”
ASME J. Biomech. Eng.
, 140(7), p.
071002
.10.1115/1.4039624
28.
Chin
,
A.
, and
Almarza
,
A.
,
2020
, “
Regional Dependence in Biphasic Transversely Isotropic Parameters in the Porcine Temporomandibular Joint Disc and Mandibular Condylar Cartilage
,”
ASME J. Biomech. Eng.
, 142(8), p. 081010.10.1115/1.4046922
29.
Yin
,
L.
, and
Elliott
,
D. M.
,
2004
, “
A Biphasic and Transversely Isotropic Mechanical Model for Tendon: Application to Mouse Tail Fascicles in Uniaxial Tension
,”
J. Biomech.
,
37
(
6
), pp.
907
916
.10.1016/j.jbiomech.2003.10.007
30.
Lempriere
,
B. M.
,
1968
, “
Poissons Ratio in Orthotropic Materials
,”
AIAA J.
,
6
(
11
), pp.
2226
2227
.10.2514/3.4974
You do not currently have access to this content.