Abstract

Aortic displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) was recently developed to assess heterogeneities in aortic wall circumferential strain (CS). However, previous studies neglected potential radial and shear strain (RSS) distributions. Herein, we present an improved aortic DENSE MRI postprocessing method to assess the feasibility of quantifying all components of the two-dimensional (2D) strain tensor. 32 previously acquired 2D DENSE scans from three distinct aortic locations were re-analyzed. Contrasting previous studies, displacements of the inner and outer aortic wall layers were processed separately to preserve RSS. Differences in regional strain between the new and old postprocessing methods were evaluated, along with interobserver, intraobserver, and interscan repeatability for all strain components. The new postprocessing method revealed an overall mean absolute difference in regional CS of 0.01 ± 0.01 compared to the prior method, with minimal impact on CS repeatability. Mean absolute magnitudes of regional RSS increased significantly compared to changes in CS (radial 0.04 ± 0.05, p < 0.001; shear 0.04 ± 0.04, p = 0.02). Most repeatability metrics for RSS were significantly worse than for CS. The unique distributions of RSS for each axial location associated well with local periaortic structures and mean aortic displacement. The new postprocessing method captures heterogeneous distributions of nonzero RSS which may provide new information for improving clinical diagnostics and computational modeling of heterogeneous aortic wall mechanics. However, future studies are required to improve the repeatability of RSS and assess the influence of partial volume effects.

References

1.
Cocciolone
,
A. J.
,
Hawes
,
J. Z.
,
Staiculescu
,
M. C.
,
Johnson
,
E. O.
,
Murshed
,
M.
, and
Wagenseil
,
J. E.
,
2018
, “
Elastin, Arterial Mechanics, and Cardiovascular Disease
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
315
(
2
), pp.
H189
H205
.10.1152/ajpheart.00087.2018
2.
Derwich
,
W.
,
Wittek
,
A.
,
Pfister
,
K.
,
Nelson
,
K.
,
Bereiter-Hahn
,
J.
,
Fritzen
,
C. P.
,
Blase
,
C.
, and
Schmitz-Rixen
,
T.
,
2016
, “
High Resolution Strain Analysis Comparing Aorta and Abdominal Aortic Aneurysm With Real Time Three Dimensional Speckle Tracking Ultrasound
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
2
), pp.
187
193
.10.1016/j.ejvs.2015.07.042
3.
Karatolios
,
K.
,
Wittek
,
A.
,
Nwe
,
T. H.
,
Bihari
,
P.
,
Shelke
,
A.
,
Josef
,
D.
,
Schmitz-Rixen
,
T.
,
Geks
,
J.
,
Maisch
,
B.
,
Blase
,
C.
,
Moosdorf
,
R.
, and
Vogt
,
S.
,
2013
, “
Method for Aortic Wall Strain Measurement With Three-Dimensional Ultrasound Speckle Tracking and Fitted Finite Element Analysis
,”
Ann. Thorac. Surg.
,
96
(
5
), pp.
1664
1671
.10.1016/j.athoracsur.2013.06.037
4.
de Hoop
,
H.
,
Petterson
,
N. J.
,
van de Vosse
,
F. N.
,
van Sambeek
,
M. R. H. M.
,
Schwab
,
H. M.
, and
Lopata
,
R. G. P.
,
2020
, “
Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta
,”
IEEE Trans. Med. Imaging
, 39(11), pp.
3714
3724
.10.1109/TMI.2020.3003430
5.
Scarabello
,
M.
,
Codari
,
M.
,
Secchi
,
F.
,
Cannao
,
P. M.
,
Ali
,
M.
,
Di Leo
,
G.
, and
Sardanelli
,
F.
,
2018
, “
Strain of Ascending Aorta on Cardiac Magnetic Resonance in 1027 Patients: Relation With Age, Gender, and Cardiovascular Disease
,”
Eur. J. Radiol.
,
99
, pp.
34
39
.10.1016/j.ejrad.2017.12.002
6.
Korosoglou
,
G.
,
Giusca
,
S.
,
Hofmann
,
N. P.
,
Patel
,
A. R.
,
Lapinskas
,
T.
,
Pieske
,
B.
,
Steen
,
H.
,
Katus
,
H. A.
, and
Kelle
,
S.
,
2019
, “
Strain-Encoded Magnetic Resonance: A Method for the Assessment of Myocardial Deformation
,”
Eur. J. Heart Fail.
,
6
(
4
), pp.
584
602
.10.1002/ehf2.12442
7.
Petersen
,
S. E.
,
Jung
,
B. A.
,
Wiesmann
,
F.
,
Selvanayagam
,
J. B.
,
Francis
,
J. M.
,
Hennig
,
J.
,
Neubauer
,
S.
, and
Robson
,
M. D.
,
2006
, “
Myocardial Tissue Phase Mapping With Cine Phase-Contrast MR Imaging: Regional Wall Motion Analysis in Healthy Volunteers
,”
Radiology
,
238
(
3
), pp.
816
826
.10.1148/radiol.2383041992
8.
Jung
,
B.
,
Markl
,
M.
,
Foll
,
D.
, and
Hennig
,
J.
, “
Investigating Myocardial Motion by MRI Using Tissue Phase Mapping
,”
Eur. J. Cardiothorac. Surg.
,
29
(Suppl. 1), pp.
150
157
.10.1016/j.ejcts.2006.02.066
9.
Chitiboi
,
T.
, and
Axel
,
L.
,
2017
, “
Magnetic Resonance Imaging of Myocardial Strain: A Review of Current Approaches
,”
J. Magn. Reson. Imaging
,
46
(
5
), pp.
1263
1280
.10.1002/jmri.25718
10.
Wedding
,
K. L.
,
Draney
,
M. T.
,
Herfkens
,
R. J.
,
Zarins
,
C. K.
,
Taylor
,
C. A.
, and
Pelc
,
N. J.
,
2002
, “
Measurement of Vessel Wall Strain Using Cine Phase Contrast MRI
,”
J. Magn. Reson. Imaging
,
15
(
4
), pp.
418
428
.10.1002/jmri.10077
11.
Draney
,
M. T.
,
Arko
,
F. R.
,
Alley
,
M. T.
,
Markl
,
M.
,
Herfkens
,
R. J.
,
Pelc
,
N. J.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2004
, “
Quantification of Vessel Wall Motion and Cyclic Strain Using Cine Phase Contrast MRI: In Vivo Validation in the Porcine Aorta
,”
Magn. Reson. Med.
,
52
(
2
), pp.
286
295
.10.1002/mrm.20137
12.
Wilson
,
J. S.
,
Zhong
,
X.
,
Hair
,
J.
,
Taylor
,
W. R.
, and
Oshinski
,
J.
,
2018
, “
In Vivo Quantification of Regional Circumferential Green Strain in the Thoracic and Abdominal Aorta by Two-Dimensional Spiral Cine DENSE MRI
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060901
.10.1115/1.4040910
13.
Wilson
,
J. S.
,
Taylor
,
W. R.
, and
Oshinski
,
J.
,
2019
, “
Assessment of the Regional Distribution of Normalized Circumferential Strain in the Thoracic and Abdominal Aorta Using DENSE Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
21
(
1
), pp.
1
14
.10.1186/s12968-019-0565-0
14.
Aletras
,
A. H.
,
Ding
,
S.
,
Balaban
,
R. S.
, and
Wen
,
H.
,
1999
, “
DENSE: Displacement Encoding With Stimulated Echoes in Cardiac Functional MRI
,”
J. Magn. Reason.
,
137
(
1
), pp.
247
252
.10.1006/jmre.1998.1676
15.
Ramanath
,
V. S.
,
Oh
,
J. K.
,
Sundt
,
T. M.
, III.
, and
Eagle
,
K. A.
,
2009
, “
Acute Aortic Syndromes and Thoracic Aortic Aneurysm
,”
Mayo Clin. Proc.
,
84
(
5
), pp.
465
481
.10.1016/S0025-6196(11)60566-1
16.
Spottiswoode
,
B. S.
,
Zhong
,
X.
,
Hess
,
A. T.
,
Kramer
,
C. M.
,
Meintjes
,
E. M.
,
Mayosi
,
B. M.
, and
Epstein
,
F. H.
,
2007
, “
Tracking Myocardial Motion From Cine DENSE Images Using Spatiotemporal Phase Unwrapping and Temporal Fitting
,”
IEEE Trans. Med. Imaging
,
26
(
1
), pp.
15
30
.10.1109/TMI.2006.884215
17.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
, pp.
172
174
.
18.
Patel
,
D. J.
,
Fry
,
D. L.
, and
Janicki
,
J. S.
,
1966
, “
Longitudinal Tethering of Arteries in Dogs
,”
Circ. Res.
,
19
(
6
), pp.
1011
1021
.10.1161/01.RES.19.6.1011
19.
Hodis
,
S.
, and
Zamir
,
M.
, “
Arterial Wall Tethering as a Distant Boundary Condition
,”
Phys. Rev. E
,
80
(
5 Pt 1
), pp.
1
7
.10.1103/PhysRevE.80.051913
20.
Petterson
,
N. J.
,
van Disseldorp
,
E. M. J.
,
van Sambeek
,
M. R. H. M.
,
van de Vosse
,
F. N.
, and
Lopata
,
R. G. P.
,
2019
, “
Including Surrounding Tissue Improves Ultrasound-Based 3D Mechanical Characterization of Abdominal Aortic Aneurysms
,”
J. Biomech.
,
85
, pp.
126
133
.10.1016/j.jbiomech.2019.01.024
21.
Goergen
,
C. J.
,
Johnson
,
B. L.
,
Greve
,
J. M.
,
Taylor
,
C. A.
, and
Zarins
,
C. K.
,
2007
, “
Increased Anterior Abdominal Aortic Wall Motion: Possible Role in Aneurysm Pathogenesis and Design of Endovascular Devices
,”
J. Endovasc. Ther.
,
14
(
4
), pp.
574
584
.10.1177/152660280701400421
22.
DeSanctis
,
R. W.
,
Doroghazi
,
R. M.
,
Austen
,
W. G.
, and
Buckley
,
M. J.
,
1987
, “
Aortic Dissection
,”
N. Engl. J. Med.
,
317
(
17
), pp.
1060
1067
.10.1056/NEJM198710223171705
23.
Benjamin
,
M. M.
, and
Roberts
,
W. C.
,
2012
, “
Fatal Aortic Rupture From Nonpenetrating Chest Trauma
,”
Proc. (Baylor Univ. Med. Cent.)
,
25
(
2
), pp.
121
123
.10.1080/08998280.2012.11928805
You do not currently have access to this content.