Abstract

Ligaments are important joint stabilizers but assessing their mechanical properties remain challenging. We developed a methodology to investigate the effects of kinematic measurement uncertainty during laxity tests on optimization-based estimation of ligament properties. We applied this methodology to a subject-specific knee model with known ligament properties as inputs and compared the estimated to the known knee ligament properties under the influence of noise. Four different sets of laxity tests were simulated with an increasing number of load cases, capturing anterior/posterior, varus/valgus, and internal/external rotation loads at 0 deg and 30 deg of knee flexion. 20 samples of uniform random noise ([−0.5,0.5] mm and degrees) were added to each set and fed into an optimization routine that subsequently estimated the ligament properties based on the noise targets. We found a large range of estimated ligament properties (stiffness ranges of 5.97 kN, 7.64 kN, 8.72 kN, and 3.86 kN; reference strain ranges of 3.11%, 2.53%, 1.88%, and 1.58% for anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medical collateral ligament (MCL), and lateral collateral ligament (LCL), respectively) for three sets of laxity tests, including up to 22 load cases. A set of laxity tests with 60 load cases kept the stiffness and reference strain ranges below 470 N per unit strain and 0.85%, respectively. These results illustrate that kinematic measurement noise have a large impact on estimated ligament properties and we recommend that future studies assess and report both the estimated ligament properties and the associated uncertainties due to kinematic measurement noise.

References

1.
Wheaton
,
M.
, and
Jensen
,
N.
,
2010
, “
The Ligament Injury Connection to Osteoarthritis
,”
J. Prolotherapy
,
2
, pp.
294
304
.http://journalofprolotherapy.com/the-ligament-injury-osteoarthritis-connection-the-role-of-prolotherapy-in-ligament-repair-and-the-prevention-of-osteoarthritis/
2.
Nevitt
,
M. C.
,
Tolstykh
,
I.
,
Shakoor
,
N.
,
Nguyen
,
U.-S. D. T.
,
Segal
,
N. A.
,
Lewis
,
C.
, and
Felson
,
D. T.
,
2016
, “
Symptoms of Knee Instability as Risk Factors for Recurrent Falls
,”
Arthritis Care Res.
,
68
(
8
), pp.
1089
1097
.10.1002/acr.22811
3.
Woo
,
S. L.
,
Debski
,
R. E.
,
Withrow
,
J. D.
, and
Janaushek
,
M. A.
,
1999
, “
Biomechanics of Knee Ligaments
,”
Am. J. Sports Med.
,
27
(
4
), pp.
533
543
.10.1177/03635465990270042301
4.
Athwal
,
K. K.
,
Hunt
,
N. C.
,
Davies
,
A. J.
,
Deehan
,
D. J.
, and
Amis
,
A. A.
,
2014
, “
Clinical Biomechanics of Instability Related to Total Knee Arthroplasty
,”
Clin. Biomech.
,
29
(
2
), pp.
119
–1
28
.10.1016/j.clinbiomech.2013.11.004
5.
Victor
,
J.
,
2017
, “
Optimising Position and Stability in Total Knee Arthroplasty
,”
EFORT Open Rev.
,
2
(
5
), pp.
215
220
.10.1302/2058-5241.2.170001
6.
Erdemir
,
A.
,
2016
, “
Open Knee: Open Source Modeling and Simulation in Knee Biomechanics
,”
J. Knee Surg.
,
29
(
2
), pp.
107
116
.10.1055/s-0035-1564600
7.
Halonen
,
K. S.
,
Dzialo
,
C. M.
,
Mannisi
,
M.
,
Venäläinen
,
M. S.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Workflow Assessing the Effect of Gait Alterations on Stresses in the Medial Tibial Cartilage—Combined Musculoskeletal Modelling and Finite Element Analysis
,”
Sci. Rep.
,
7
(
1
), p.
17396
.10.1038/s41598-017-17228-x
8.
Naghibi Beidokhti
,
H.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.10.1016/j.jbiomech.2017.08.030
9.
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Smith
,
C. R.
, and
Thelen
,
D. G.
,
2015
, “
Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2675
2685
.10.1007/s10439-015-1326-3
10.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2002
, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
,
35
(
7
), pp.
903
909
.10.1016/S0021-9290(02)00052-0
11.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
–4
32
.10.1016/0021-9290(86)90019-9
12.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient-Specific Soft-Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.10.1002/jor.23032
13.
Pedersen
,
D.
,
Vanheule
,
V.
,
Wirix-Speetjens
,
R.
,
Taylan
,
O.
,
Delport
,
H. P.
,
Scheys
,
L.
, and
Andersen
,
M. S.
,
2019
, “
A Novel Non-Invasive Method for Measuring Knee Joint Laxity in Four Dof: In Vitro Proof-of-Concept and Validation
,”
J. Biomech.
,
82
, pp.
62
69
.10.1016/j.jbiomech.2018.10.016
14.
Merriaux
,
P.
,
Dupuis
,
Y.
,
Boutteau
,
R.
,
Vasseur
,
P.
, and
Savatier
,
X.
,
2017
, “
A Study of Vicon System Positioning Performance
,”
Senors
,
17
(
7
), p.
1591
.10.3390/s17071591
15.
Peterfy
,
C. G.
,
Schneider
,
E.
, and
Nevitt
,
M.
,
2008
, “
The Osteoarthritis Initiative: Report on the Design Rationale for the Magnetic Resonance Imaging Protocol for the Knee
,”
Osteoarthritis Cartilage
,
16
(
12
), pp.
1433
1441
.10.1016/j.joca.2008.06.016
16.
Balamoody
,
S.
,
Williams
,
T. G.
,
Waterton
,
J. C.
,
Bowes
,
M.
,
Hodgson
,
R.
,
Taylor
,
C. J.
, and
Hutchinson
,
C. E.
,
2010
, “
Comparison of 3T MR Scanners in Regional Cartilage-Thickness Analysis in Osteoarthritis: A Cross-Sectional Multicenter, Multivendor Study
,”
Arthritis Res. Ther.
,
12
(
5
), p.
R202
.10.1186/ar3174
17.
Parr
,
W. C. H.
,
Chatterjee
,
H. J.
, and
Soligo
,
C.
,
2012
, “
Calculating the Axes of Rotation for the Subtalar and Talocrural Joints Using 3D Bone Reconstructions
,”
J. Biomech.
,
45
(
6
), pp.
1103
1107
.10.1016/j.jbiomech.2012.01.011
18.
Dzialo
,
C. M.
,
Pedersen
,
P. H.
,
Simonsen
,
C. W.
,
Jensen
,
K. K.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2018
, “
Development and Validation of a Subject-Specific Moving-Axis Tibiofemoral Joint Model Using MRI and EOS Imaging During a Quasi-Static Lunge
,”
J. Biomech.
,
72
, pp.
71
80
.10.1016/j.jbiomech.2018.02.032
19.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions Application to the Knee
,”
ASME J. Biomed. Eng.
,
105
, pp.
136
143
.10.1115/1.3138397
20.
Andersen
,
M. S.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Nolte
,
D.
, and
Rasmussen
,
J.
,
2017
, “
Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling
,”
ASME J. Biomech. Eng.
,
139
(
9
), p.
091001
.10.1115/1.4037100
21.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
22.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.10.1115/1.2894883
23.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
24.
Box
,
M.
,
1965
, “
A New Method of Constrained Optimization and a Comparison With Other Methods
,”
Comput. J.
,
8
(
1
), pp.
42
52
.10.1093/comjnl/8.1.42
You do not currently have access to this content.