Abstract

Biomechanical characterization of abdominal aortic aneurysms (AAAs) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification. In addition, computational fluid dynamics modeling of AAA typically lacks the patient-specific inflow and outflow boundary conditions that should be obtained by nonstandard of care clinical imaging. An alternative approach for analyzing AAA flow and sac volume changes is to conduct in vitro experiments in a controlled laboratory environment. In this study, we designed, built, and characterized quantitatively a benchtop flow loop using a deformable AAA silicone phantom representative of a patient-specific geometry. The impedance modules, which are essential components of the flow loop, were fine-tuned to ensure typical intraluminal pressure conditions within the AAA sac. The phantom was imaged with a magnetic resonance imaging (MRI) scanner to acquire time-resolved images of the moving wall and the velocity field inside the sac. Temporal AAA sac volume changes lead to a corresponding variation in compliance throughout the cardiac cycle. The primary outcome of this work was the design optimization of the impedance elements, the quantitative characterization of the resistive and capacitive attributes of a compliant AAA phantom, and the exemplary use of MRI for flow visualization and quantification of the deformed AAA geometry.

References

1.
Solomon
,
C. G.
, and
Kent
,
K. C.
,
2014
, “
Abdominal Aortic Aneurysms
,”
New Engl. J. Med.
,
371
(
22
), pp.
2101
2108
.10.1056/NEJMcp1401430
2.
Jordan
,
W. D.
,
Alcocer
,
F.
,
Wirthlin
,
D. J.
,
Westfall
,
A. O.
, and
Whitley
,
D.
,
2003
, “
Abdominal Aortic Aneurysms in “High-Risk” Surgical Patients: Comparison of Open and Endovascular Repair
,”
Ann. Surg.
,
237
(
5
), pp.
623
630
.10.1097/01.SLA.0000064397.28563.80
3.
Kuivaniemi
,
H.
,
Ryer
,
E. J.
,
Elmore
,
J. R.
, and
Tromp
,
G.
,
2015
, “
Understanding the Pathogenesis of Abdominal Aortic Aneurysms
,”
Expert Rev. Cardiovasc. Ther.
,
13
(
9
), pp.
975
987
.10.1586/14779072.2015.1074861
4.
Valentine
,
R. J.
,
DeCaprio
,
J. D.
,
Castillo
,
J. M.
,
Modrall
,
J. G.
,
Jackson
,
M. R.
, and
Clagett
,
G. P.
,
2000
, “
Watchful Waiting in Cases of Small Abdominal Aortic Aneurysms–Appropriate for All Patients?
,”
J. Vasc. Surg.
,
32
(
3
), pp.
441
450
.10.1067/mva.2000.108635
5.
Wilt
,
T. J.
,
Lederle
,
F. A.
,
MacDonald
,
R.
,
Jonk
,
Y. C.
,
Rector
,
T. S.
, and
Kane
,
R. L.
,
2006
, “
Comparison of Endovascular and Open Surgical Repairs for Abdominal Aortic Aneurysm
,”
Evidence Rep./Technol. Assess.
,
1
(
144
), pp.
1
113
.https://pubmed.ncbi.nlm.nih.gov/17764213/
6.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.10.1067/mva.2002.125478
7.
Venkatasubramaniam
,
A.
,
Fagan
,
M.
,
Mehta
,
T.
,
Mylankal
,
K.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I.
, and
McCollum
,
P.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovascular Surg.
,
28
(
2
), pp.
168
176
.10.1016/j.ejvs.2004.03.029
8.
Vorp
,
D. A.
, and
Geest
,
J. P. V.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Aeterioscler., Thromb., Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.10.1161/01.ATV.0000174129.77391.55
9.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
10.
Badel
,
P.
,
Avril
,
S.
,
Lessner
,
S.
, and
Sutton
,
M.
,
2012
, “
Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
37
48
.10.1080/10255842.2011.586945
11.
Fatemifar
,
F.
, and
Han
,
H.-C.
,
2016
, “
Effect of Axial Stretch on Lumen Collapse of Arteries
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
124503
.10.1115/1.4034785
12.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
13.
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2016
, “
Artery Buckling Analysis Using a Two-Layered Wall Model With Collagen Dispersion
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
515
524
.10.1016/j.jmbbm.2016.03.007
14.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.10.1115/1.1695572
15.
Maier
,
A.
,
Gee
,
M.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H.-H.
, and
Wall
,
W.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.10.1007/s10439-010-0067-6
16.
Rodríguez
,
J. F.
,
Martufi
,
G.
,
Doblaré
,
M.
, and
Finol
,
E. A.
,
2009
, “
The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2218
2221
.10.1007/s10439-009-9767-1
17.
van Disseldorp
,
E. M. J.
,
Petterson
,
N. J.
,
Rutten
,
M. C. M.
,
van de Vosse
,
F. N.
,
van Sambeek
,
M. R. H. M.
, and
Lopata
,
R. G. P.
,
2016
, “
Patient Specific Wall Stress Analysis and Mechanical Characterization of Abdominal Aortic Aneurysms Using 4D Ultrasound
,”
Eur. J. Vasc. Endovascular Surg.
,
52
(
5
), pp.
635
642
.10.1016/j.ejvs.2016.07.088
18.
Golemati
,
S.
,
Patelaki
,
E.
, and
Konstantina
,
S. N.
,
2019
, “
Image-Based Motion and Strain Estimation of the Vessel Wall
,”
Cardiovascular Computing—Methodologies and Clinical Applications
(Series in BioEngineering),
S.
Golemati
and
K.
Nikita
, eds.,
Springer
,
Singapore
.
19.
Beggs
,
K. W.
,
2015
, “
Design of a Physical Windkessel Model for Use in LVAD In-Vitro Benchtop Modeling
,” University of Central Florida, Orlando, FL, Report No.
HIM 1990–2015
.https://stars.library.ucf.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2853&context=honorstheses1990-2015
20.
Cappello
,
A.
,
Gnudi
,
G.
, and
Lamberti
,
C.
,
1995
, “
Identification of the Three-Element Windkessel Model Incorporating a Pressure-Dependent Compliance
,”
Ann. Biomed. Eng.
,
23
(
2
), pp.
164
177
.10.1007/BF02368323
21.
Stergiopulos
,
N.
,
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
1999
, “
Total Arterial Inertance as the Fourth Element of the Windkessel Model
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
276
(
1
), pp.
H81
H88
.10.1152/ajpheart.1999.276.1.H81
22.
Westerhof
,
N.
,
Elzinga
,
G.
, and
Sipkema
,
P.
,
1971
, “
An Artificial Arterial System for Pumping Hearts
,”
J. Appl. Physiol.
,
31
(
5
), pp.
776
781
.10.1152/jappl.1971.31.5.776
23.
Kung
,
E. O.
, and
Taylor
,
C. A.
,
2011
, “
Development of a Physical Windkessel Module to Recreate In Vivo Vascular Flow Impedance for In Vitro Experiments
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
2
14
.10.1007/s13239-010-0030-6
24.
van‘T Veer
,
M.
,
Buth
,
J.
,
Merkx
,
M.
,
Tonino
,
P.
,
van den Bosch
,
H.
,
Pijls
,
N.
, and
van de Vosse
,
F.
,
2008
, “
Biomechanical Properties of Abdominal Aortic Aneurysms Assessed by Simultaneously Measured Pressure and Volume Changes in Humans
,”
J. Vasc. Surg.
,
48
(
6
), pp.
1401
1407
.10.1016/j.jvs.2008.06.060
25.
Maier
,
S.
,
Meier
,
D.
,
Boesiger
,
P.
,
Moser
,
U.
, and
Vieli
,
A.
,
1989
, “
Human Abdominal Aorta: Comparative Measurements of Blood Flow With MR Imaging and Multigated Doppler US
,”
Radiology
,
171
(
2
), pp.
487
492
.10.1148/radiology.171.2.2649924
26.
Kung
,
E. O.
,
Les
,
A. S.
,
Medina
,
F.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041003
.10.1115/1.4003526
27.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.10.1007/s10439-011-0284-7
28.
Ahamed
,
T.
,
Peattie
,
R. A.
,
Dorfmann
,
L.
, and
Cherry Kemmerling
,
E. M.
,
2018
, “
Pulsatile Flow Measurements and Wall Stress Distribution in a Patient Specific Abdominal Aortic Aneurysm Phantom
,”
ZAMM‐J. Appl. Math. Mech.
,
98
(
12
), pp.
2258
2274
.10.1002/zamm.201700281
29.
Asbury
,
C. L.
,
Ruberti
,
J. W.
,
Bluth
,
E. I.
, and
Peattie
,
R. A.
,
1995
, “
Experimental Investigation of Steady Flow in Rigid Models of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
29
39
.10.1007/BF02368298
30.
Deplano
,
V.
,
Meyer
,
C.
,
Guivier-Curien
,
C.
, and
Bertrand
,
E.
,
2013
, “
New Insights Into the Understanding of Flow Dynamics in an In Vitro Model for Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
35
(
6
), pp.
800
809
.10.1016/j.medengphy.2012.08.010
31.
Egelhoff
,
C. J.
,
Budwig
,
R. S.
,
Elger
,
D. F.
,
Khraishi
,
T. A.
, and
Johansen
,
K. H.
,
1999
, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
,
32
(
12
), pp.
1319
1329
.10.1016/S0021-9290(99)00134-7
32.
Ene
,
F.
,
Gachon
,
C.
,
Delassus
,
P.
,
Carroll
,
R.
,
Stefanov
,
F.
,
O'Flynn
,
P.
, and
Morris
,
L.
,
2011
, “
In Vitro Evaluation of the Effects of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Dynamics
,”
Med. Eng. Phys.
,
33
(
8
), pp.
957
966
.10.1016/j.medengphy.2011.03.005
33.
Wang
,
Y.
,
Joannic
,
D.
,
Juillion
,
P.
,
Monnet
,
A.
,
Delassus
,
P.
,
Lalande
,
A.
, and
Fontaine
,
J.-F.
,
2018
, “
Validation of the Strain Assessment of a Phantom of Abdominal Aortic Aneurysm: Comparison of Results Obtained From Magnetic Resonance Imaging and Stereovision Measurements
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031001
.10.1115/1.4038743
34.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
,
2011
, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2010
2026
.10.1007/s10439-011-0285-6
35.
Deplano
,
V.
,
Guivier-Curien
,
C.
, and
Bertrand
,
E.
,
2016
, “
3D Analysis of Vortical Structures in an Abdominal Aortic Aneurysm by Stereoscopic PIV
,”
Exp. Fluids
,
57
(
11
), p.
167
.10.1007/s00348-016-2263-0
36.
Yu
,
S. C. M.
,
2000
, “
Steady and Pulsatile Flow Characteristics in Abdominal Aortic Aneurysm Models Using Particle Image Velocimetry
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
74
83
.10.1016/S0142-727X(99)00058-2
You do not currently have access to this content.