Abstract

While using a prosthesis, transtibial amputees can experience pain and discomfort brought on by large pressure gradients at the interface between the residual limb and the prosthetic socket. Current prosthetic interface solutions attempt to alleviate these pressure gradients using soft homogenous liners to reduce and distribute pressures. This research investigates an additively manufactured metamaterial inlay with a tailored mechanical response to reduce peak pressure gradients around the limb. The inlay uses a hyperelastic behaving metamaterial (US10244818) comprised of triangular pattern unit cells, 3D printed with walls of various thicknesses controlled by draft angles. The hyperelastic material properties are modeled using a Yeoh third-order model. The third-order coefficients can be adjusted and optimized, which corresponds to a change in the unit cell wall thickness to create an inlay that can meet the unique offloading needs of an amputee. Finite element analysis simulations evaluated the pressure gradient reduction from (1) a standard homogenous silicone liner, (2) a prosthetist's inlay prescription that utilizes three variations of the metamaterial, and (3) a metamaterial solution with optimized Yeoh third-order coefficients. Compared to a traditional homogenous silicone liner for two unique limb loading scenarios, the prosthetist prescribed inlay and the optimized material inlay can achieve equal or greater pressure gradient reduction capabilities. These preliminary results show the potential feasibility of implementing this metamaterial as a method of personalized medicine for transtibial amputees by creating a customizable interface solution to meet the unique performance needs of an individual patient.

References

1.
Gailey
,
R.
, and
Allen
,
K.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Dev.
,
45
(
1
), pp.
15
30
.10.1682/JRRD.2006.11.0147
2.
Raichle
,
K. A.
,
Hanley
,
M. A.
,
Molton
,
I.
,
Kadel
,
N. J.
,
Campbell
,
K.
,
Phelps
,
E.
,
Ehde
,
D.
, and
Smith
,
D. G.
,
2008
, “
Prosthesis Use in Person With Lower and Upper-Limb Amputation
,”
J. Rehabil. Res. Dev.
,
45
(
7
), pp.
961
972
.10.1682/JRRD.2007.09.0151
3.
Robbins
,
C. B.
,
Vreeman
,
D. J.
,
Sothmann
,
M. S.
,
Wilson
,
S. L.
, and
Oldridge
,
N. B.
,
2009
, “
A Review of the Long-Term Health Outcomes Associated With War-Related Amputation
,”
Military Med.
,
174
(
6
), pp.
588
592
.10.7205/MILMED-D-00-0608
4.
Pirouzi
,
G.
,
Abu Osman
,
N. A.
,
Eshraghi
,
A.
,
Ali
,
S.
,
Gholizadeh
,
H.
, and
Wan Abas
,
W.
,
2014
, “
Review of the Socket Design and Interface Pressure Measurement for Transtibial Prosthesis
,”
Sci. World J.
,
2014
, pp.
1
9
.10.1155/2014/849073
5.
Klute
,
G. K.
,
Glaister
,
B. C.
, and
Berge
,
J. S.
,
2010
, “
Prosthetic Liners for Lower Limb Amputees: A Review of the Literature
,”
Prosthet. Orthot. Int.
,
34
(
2
), pp.
146
153
.10.3109/03093641003645528
6.
Hachisuka
,
K.
,
Nakamura
,
T.
,
Ohmine
,
S.
,
Shitama
,
H.
, and
Shinkoda
,
K.
,
2001
, “
Hygiene Problems of Residual Limb and Silicone Liners in Transtibial Amputees Wearing the Total Surface Bearing Socket
,”
Arch. Phys. Med. Rehabil.
,
82
(
9
), pp.
1286
1290
.10.1053/apmr.2001.25154
7.
Baars
,
E.
, and
Geertzen
,
J.
,
2005
, “
Literature Review of the Possible Advantages of Silicon Liner Socket Use in Trans-Tibial Prostheses
,”
Prosthet. Orthot. Int.
,
29
(
1
), pp.
27
37
.10.1080/17461550500069612
8.
Zhang
,
M.
, and
Lee
,
W. C.
,
2006
, “
Quantifying the Regional Load-Bearing Ability of Trans-Tibial Stumps
,”
Prosthet. Orthot. Int.
,
30
(
1
), pp.
25
34
.10.1080/03093640500468074
9.
Jia
,
X.
,
Zhang
,
M.
, and
Lee
,
W. C.
,
2004
, “
Load Transfer Mechanics Between Trans-Tibial Prosthetic Socket and Residual Limb-Dynamic Effects
,”
J. Biomech.
,
37
(
9
), pp.
1371
1377
.10.1016/j.jbiomech.2003.12.024
10.
Lenka
,
P. K.
, and
Choudhury
,
A. R.
,
2011
, “
Analysis of Trans Tibial Prosthetic Socket Materials Using Finite Element Method
,”
J. Biomed. Sci. Eng.
,
04
(
12
), pp.
762
768
.10.4236/jbise.2011.412094
11.
Lin
,
C.-C.
,
Chang
,
C.-H.
,
Wu
,
C.-L.
,
Chung
,
K.-C.
, and
Liao
,
I.-C.
,
2004
, “
Effects of Liner Stiffness for Trans-Tibial Prosthesis: A Finite Element Contact Model
,”
Med. Eng. Phys.
,
26
(
1
), pp.
1
9
.10.1016/S1350-4533(03)00127-9
12.
Boutwell
,
E.
,
Stine
,
R.
,
Hansen
,
A.
,
Tucker
,
K.
, and
Gard
,
S.
,
2012
, “
Effect of Prosthetic Gel Liner Thickness on Gait Biomechanics and Pressure Distribution Within the Transtibial Socket
,”
JRRD
,
49
(
2
), pp.
227
240
.10.1682/JRRD.2010.06.0121
13.
Armstrong
,
D. G.
,
Peters
,
E. J. G.
,
Athanasiou
,
K. A.
, and
Lavery
,
L. A.
,
1998
, “
Is There a Critical Level of Plantar Foot Pressure to Identify Patients at Risk for Neuropathic Foot Ulceration?
,”
J Foot Ankle Surg.
,
37
(
4
), pp.
303
307
.10.1016/S1067-2516(98)80066-5
14.
Muller
,
M. J.
,
Zou
,
D.
, and
Lott
,
D. J.
,
2005
, “
‘Pressure Gradient’, As an Indicator of Planta Skin Injury
,”
Diabetes Care
, 28(12), pp.
2908
2912
.10.2337/diacare.28.12.2908
15.
Zou
,
D.
,
Mueller
,
M. J.
, and
Lott
,
D. J.
,
2007
, “
Effect of Peak Pressure and Pressure Gradient on Subsurface Shear Stresses in the Neuropathic Foot
,”
J. Biomech.
,
40
(
4
), pp.
883
890
.10.1016/j.jbiomech.2006.03.005
16.
Sanders
,
J.
,
Daly
,
C.
,
Cummings
,
W.
,
Reed
,
R.
, and
Marks
,
R.
,
1994
, “
A Measurement Device to Assist Amputee Prosthetic Fitting
,”
J. Clinical Eng.
, 19(1), pp.
63
71
. 10.1097/00004669-199401000-00018
17.
Sanders
,
J. E.
,
Greve
,
J. M.
,
Mitchell
,
S. B.
,
Zachariah
, and
Santosh
,
G.
,
1998
, “
Material Properties of Commonly-Used Interface Materials and Their Static Coefficients of Friction With Skin and Socks
,”
J. Rehabil. Res. Dev.
,
35
(
2
), pp.
161
176
.https://pubmed.ncbi.nlm.nih.gov/9651888/
18.
Kristinsson
,
O.
,
1993
, “
The ICEROSS Concept: A Discussion of a Philosophy
,”
Prosthet. Orthot. Int.
,
17
(
1
), pp.
49
55
.10.3109/03093649309164354
19.
Sanders
,
J. E.
,
Nicholson
,
B. S.
,
Zachariah
,
S. G.
,
Cassisi
,
D. V.
,
Karchin
,
A.
, and
Fergason
,
J. R.
,
2004
, “
Testing of Elastomeric Liners Used in Limb Prosthetics: Classification of 15 Products by Mechanical Performance
,”
J. Rehabil. Res. Dev.
, 41(2), pp.
175
186
.10.1682/JRRD.2004.02.0175
20.
Hafner
,
B. J.
,
Cagle
,
J.
,
Allyn
,
K. J.
, and
Sanders
,
J. E.
,
2017
, “
Elastomeric Liners for People With Transtibial Amputation: Survey of Prosthetists' Clinical Practices
,”
Prosthet. Orthot. Int.
,
41
(
2
), pp.
149
156
.10.1177/0309364616661256
21.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
.10.1103/PhysRevLett.85.3966
22.
Shelby
,
R. A.
,
Smith
,
D. R.
, and
Schultz
,
S.
,
2001
, “
Experimental Verification of a Negative Index of Refraction
,”
Science
,
292
(
5514
), pp.
77
79
.10.1126/science.1058847
23.
Smith
,
D. R.
,
Pendry
,
J. B.
, and
Wiltshire
,
M. C.
,
2004
, “
Metamaterials and Negative Refraction Index
,”
Science
,
305
(
5685
), pp.
788
792
.10.1126/science.1096796
24.
Cai
,
W.
, and
Shalaev
,
V.
,
2010
,
Optical Metamaterials: Fundamentals and Applications
,
Springer
,
New York
.
25.
Marques
,
R.
,
Martin
,
F.
, and
Sorolla
,
M.
,
2011
,
Metamaterials With Negative Parameters: Theory, Design and Microwave Applications
,
Wiley
,
Hoboken, NJ
.
26.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
, 4(5979), pp.
1
6
.https://www.nature.com/articles/srep05979
27.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.10.1016/j.pmatsci.2017.12.003
28.
Cagle
,
J. C.
,
Reinhall
,
P. G.
,
Hafner
,
B. J.
, and
Sanders
,
J. E.
,
2017
, “
Development of Standardized Material Testing Protocols for Prosthetic Liners
,”
ASME J. Biomech. Eng.
,
139
(
4
), p. 045001.10.1115/1.4035917
29.
Lee
,
W. C.
,
Zhang
,
M.
,
Jia
,
X.
, and
CHeung
,
J. T.
,
2004
, “
Finite Element Modeling of the Contact Interface Between Trans-Tibial Residual Limb and Prosthetic Socket
,”
Med. Eng. Phys.
,
26
(
8
), pp.
655
662
.10.1016/j.medengphy.2004.04.010
30.
Cagle
,
J. C.
,
Reinhall
,
P. G.
,
Allyn
,
K. J.
,
McLean
,
J.
,
Hinrichs
,
P.
,
Hafner
,
B. J.
, and
Sanders
,
J. E.
,
2018
, “
A Finite Element Model to Assess Transtibial Prosthetic Sockets With Elastomeric Liners
,”
Med. Biol. Eng. Comput.
, 56(7), pp.
1227
1240
.10.1007/s11517-017-1758-z
31.
Zhang
,
M.
,
Lord
,
M.
,
Turner-Smoth
,
A. R.
, and
Roberts
,
V. C.
,
1995
, “
Development of a Nonlinear Finite Element Modelling of the Below-Knee Prosthetic Socket Interface
,”
Med. Eng. Phys.
, 17(8), pp.
559
566
.10.1016/1350-4533(95)00002-5
32.
Steer
,
J. W.
,
Worsley
,
P. R.
,
Browne
,
M.
, and
Dickinson
,
A. S.
,
2019
, “
Predictive Prosthetic Socket Design: Part 1- Population-Based Evaluation of Transtibial Prosthetic Sockets by FEA-Driven Surrogate Modelling
,”
Biomech. Model. Mechanbiol.
, 19(4), pp.
1331
1346
.10.1007/s10237-019-01195-5
33.
Dickinson
,
A. S.
,
Steer
,
J. W.
, and
Worsley
,
P. R.
,
2017
, “
Finite Element Analysis of the Amputated Lower Limb: A Systematic Review and Recommendations
,”
Med. Eng. Phys.
,
43
(
5
), pp.
1
18
.10.1016/j.medengphy.2017.02.008
34.
Silver-Thorn
,
M. B.
, and
Childress
,
D. S.
,
1995
, “
Parametric Analysis Using the Finite Element Method to Investigate Prosthetic Interface Stresses for Persons With Trans-Tibial Amputation
,”
J. Rehabil. Res. Dev.
, 33(3), pp.
227
238
.https://pubmed.ncbi.nlm.nih.gov/8823671/
35.
Goh
,
J. C. H.
,
Lee
,
P. V. S.
,
Toh
,
S. L.
, and
Ooi
,
C. K.
,
2005
, “
Development of an Integrated CAD-FEA Process for Below-Knee Prosthetic Sockets
,”
Clin. Biomech.
,
20
(
6
), pp.
623
629
.10.1016/j.clinbiomech.2005.02.005
36.
Colombo
,
G.
,
Filippi
,
S.
,
Rizzi
,
C.
, and
Rotini
,
F.
,
2010
, “
A New Design Paradigm for the Development of Custom-Fit Soft Sockets for Lower Limb Prostheses
,”
Comput. Ind.
,
61
(
6
), pp.
513
523
.10.1016/j.compind.2010.03.008
37.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
,
Rogers
,
W. E.
, and
Bosker
,
G.
,
2006
, “
An Experimental and Theoretical Framework for Manufacturing Prosthetic Sockets for Transtibial Amputees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
304
310
.10.1109/TNSRE.2006.881570
38.
Sengeh
,
D. M.
, and
Herr
,
H.
,
2013
, “
A Variable-Impedance Prosthetic Socket for a Transtibial Amputee Designed From Magnetic Resonance Imaging Data
,”
J. Prosthet. Orthot.
,
25
(
3
), pp.
129
137
.10.1097/JPO.0b013e31829be19c
39.
DesJardins
,
J.
,
Stanley
,
S. E.
,
Przestrelski
,
B.
,
Pruett
,
T. C.
,
Hoeffner
,
S. L.
, and
Kaluf
,
B. D.
, “
Variable Hardness Orthotic
,” Patent 10244818 B2, Publication 2019-04-02.
40.
Przestrselski
,
B. T.
,
2017
,
In-Shoe Innovation: 3-D Printed Foot Orthotses
,
Clemson University
,
Clemson, SC
.
41.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
745
771
.10.5254/1.3538343
42.
King
,
M.
,
Bewes
,
P.
, and
Awori
,
N.
,
1987
,
Primary Surgery: Trauma
,
Oxford Medical Publications
,
Oxford, UK
.
43.
Zhang
,
M.
,
Turner-Smith
,
A.
,
Roberts
,
V.
, and
Tanner
,
A.
,
1996
, “
Friction Action at Lower Limb/Prosthetic Socket Interface
,”
Med. Eng. Phys.
,
18
(
3
), pp.
207
214
.10.1016/1350-4533(95)00038-0
44.
Martins
,
P.
,
Natal Jorge
,
R. M.
, and
Ferreira
,
J. M.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.10.1111/j.1475-1305.2006.00257.x
45.
Zhang
,
M.
, and
Roberts
,
C.
,
2000
, “
Comparison of Computational Analysis With Clinical Measurement of Stresses on Below-Knee Residual Limb in a Prosthetic Socket
,”
Med Eng. Phys.
,
22
(
9
), pp.
607
–6
12
.10.1016/S1350-4533(00)00079-5
46.
McGrath
,
M. P.
,
Gao
,
J.
,
Tang
,
J.
,
Laszczak
,
P.
,
Jiang
,
L.
,
Bader
,
D.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2017
, “
Development of a Residuum/Socket Interface Simulator for Lower Limb Prosthetics
,”
Eng. Med.
,
231
(
3
), pp.
235
242
.10.1177/0954411917690764
47.
Faustini
,
M. C.
,
Neptune
,
R. R.
, and
Crawford
,
R. H.
,
2005
, “
The Quasi-Static Response of Compliant Prosthetic Sockets for Transtibial Amputees Using Finite Element Methods
,”
Med. Eng. Phys.
, 28(2), pp.
114
121
.10.1016/j.medengphy.2005.04.019
48.
Satterfield
,
Z.
,
Kulkarni
,
N.
,
Fadel
,
G.
,
Li
,
G.
,
Coutris
,
N.
, and
Castanier
,
M. P.
,
2018
, “
Unit Cell Synthesis for Design of Materials With Targeted Nonlinear Deformation Response
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121401
.10.1115/1.4037894
49.
Yeung
,
L. F.
,
Leung
,
A. K.
,
Zhang
,
M.
, and
Lee
,
W. C.
,
2013
, “
Effects of Long-Distance Walking on Socket-Limb Interface Pressure, Tactile Sensitivity and Subjective Perceptions of Trans-Tibial Amputees
,”
Disabil. Rehabil.
,
35
(
11
), pp.
888
893
.10.3109/09638288.2012.712197
50.
Webster
,
J. B.
,
Hakimi
,
K. N.
,
Williams
,
R. M.
,
Turner
,
A. P.
,
Norvell
,
D. C.
, and
Czerniecki
,
J. M.
,
2012
, “
Prosthetic Fitting, Use, and Satisfaction Following Lower-Limb Amputation: A Prospective Study
,”
J. Rehabil. Res. Dev.
,
49
(
10
), pp.
1493
–1
504
.10.1682/JRRD.2012.01.0001
51.
Hanspal
,
R. S.
,
Fisher
,
K.
, and
Nieveen
,
R.
,
2003
, “
Prosthetic Socket Fit Comfort Score
,”
Disabil. Rehabil.
,
25
(
22
), pp.
1278
1280
.10.1080/09638280310001603983
52.
Downic
,
W.
,
Leatham
,
P.
,
Rhind
,
V.
,
Wright
,
V.
,
Branco
,
J.
, and
Anderson
,
J.
,
1978
, “
Studies With Pain Rating Scales
,”
Ann. Rheumatic Diseases
, 37(4), pp.
378
381
.10.1136/ard.37.4.378
53.
Legro
,
M.
,
Reiber
,
G.
,
Smith
,
D.
,
del Aguila
,
M.
,
Larsen
,
J.
, and
Boone
,
D.
,
1998
, “
Prosthesis Evaluation Questionnaire for Persons With Lower Limb Amputations: Assessing Prosthesis-Related Quality of Life
,”
Arch. Phys. Med. Rehabil.
,
79
(
8
), pp.
931
938
.10.1016/S0003-9993(98)90090-9
You do not currently have access to this content.