Abstract

The biomechanical process of childbirth is necessary to usher in new lives—but it can also result in trauma. This physically intense process can put both the mother and the child at risk of injuries and complications that have life-long impact. Computational models, as a powerful tool to simulate and explore complex phenomena, have been used to improve our understanding of childbirth processes and related injuries since the 1990s. The goal of this paper is to review and summarize the breadth and current state of the computational models of childbirth in the literature—focusing on those that investigate the mechanical process and effects. We first summarize the state of critical characteristics that have been included in computational models of childbirth (i.e., maternal anatomy, fetal anatomy, cardinal movements, and maternal soft tissue mechanical behavior). We then delve into the findings of the past studies of birth processes and mechanical injuries in an effort to bridge the gap between the theoretical, numerical assessment and the empirical, clinical observations and practices. These findings are from applications of childbirth computational models in four areas: (1) the process of childbirth itself, (2) maternal injuries, (3) fetal injuries, and (4) protective measures employed by clinicians during delivery. Finally, we identify some of the challenges that computational models still face and suggest future directions through which more biofidelic simulations of childbirth might be achieved, with the goal that advancing models may provide more efficient and accurate, patient-specific assessment to support future clinical decision-making.

References

References
1.
Grimm
,
M. J.
,
2016
, “
Maternal Endogenous Forces and Shoulder Dystocia
,”
Clin. Obstet. Gynecol.
,
59
(
4
), pp.
820
829
.10.1097/GRF.0000000000000230
2.
Chaliha
,
C.
,
2009
, “
Postpartum Pelvic Floor Trauma
,”
Curr. Opin. Obstet. Gynecol.
,
21
(
6
), pp.
474
479
.10.1097/GCO.0b013e328332a84e
3.
American College of Obstetricians and Gynecologists
2014
,
Neonatal Brachial Plexus Palsy
,
The American College of Obstetricians and Gynecologists, Women's Health Care Physicians
,
Washington, DC
.
4.
Crofts
,
J. F.
,
Attilakos
,
G.
,
Read
,
M.
,
Sibanda
,
T.
, and
Draycott
,
T. J.
,
2005
, “
Shoulder Dystocia Training Using a New Birth Training Mannequin
,”
BJOG: Int. J. Obstet. Gynaecol.
,
112
(
7
), pp.
997
999
.10.1111/j.1471-0528.2005.00559.x
5.
Crofts
,
J. F.
,
Bartlett
,
C.
,
Ellis
,
D.
,
Hunt
,
L. P.
,
Fox
,
R.
, and
Draycott
,
T. J.
,
2007
, “
Management of Shoulder Dystocia: Skill Retention 6 and 12 Months After Training
,”
Obstet. Gynecol.
,
110
(
5
), pp.
1069
1074
.10.1097/01.AOG.0000286779.41037.38
6.
Moreau
,
R.
,
Ochoa
,
V.
,
Pham
,
M. T.
,
Boulanger
,
P.
,
Redarce
,
T.
, and
Dupuis
,
O.
,
2007
, “
Evaluation of Obstetric Gestures: An Approach Based on the Curvature of 3-D Positions
,”
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Lyon, France, Aug. 23–26, pp.
3634
3637
.10.1109/IEMBS.2007.4353118
7.
Gurewitsch
,
E. D.
,
Kim
,
E. J.
,
Yang
,
J. H.
,
Outland
,
K. E.
,
McDonald
,
M. K.
, and
Allen
,
R. H.
,
2005
, “
Comparing McRoberts' and Rubin's Maneuvers for Initial Management of Shoulder Dystocia: An Objective Evaluation
,”
Am. J. Obstet. Gynecol.
,
192
(
1
), pp.
153
160
.10.1016/j.ajog.2004.05.055
8.
Kim
,
E. J.
,
Theprungsirikul
,
P.
,
McDonald
,
M. K.
,
Gurewithsch
,
E. D.
, and
Allen
,
R. H.
,
2005
, “
A Biofidelic Birthing Simulator
,”
IEEE Eng. Med. Biol. Mag.
,
24
(
6
), pp.
34
39
.10.1109/MEMB.2005.1549728
9.
Allen
,
R. H.
,
Cha
,
S. L.
,
Kranker
,
L. M.
,
Johnson
,
T. L.
, and
Gurewitsch
,
E. D.
,
2007
, “
Comparing Mechanical Fetal Response During Descent, Crowning, and Restitution Among Deliveries With and Without Shoulder Dystocia
,”
Am. J. Obstet. Gynecol.
,
196
(
6
), p.
539
.10.1016/j.ajog.2006.12.034
10.
Lehn
,
A. M.
,
Baumer
,
A.
, and
Leftwich
,
M. C.
,
2016
, “
An Experimental Approach to a Simplified Model of Human Birth
,”
J. Biomech.
,
49
(
11
), pp.
2313
2317
.10.1016/j.jbiomech.2015.11.046
11.
Noritomi
,
P. Y.
,
da Silva
,
J. V. L.
,
Dellai
,
R. C. A.
,
Fiorentino
,
A.
,
Giorleo
,
L.
, and
Ceretti
,
E.
,
2013
, “
Virtual Modeling of a Female Pelvic Floor and Hypothesis for Simulating Biomechanical Behavior During Natural Delivery
,”
Procedia CIRP
,
5
, pp.
300
304
.10.1016/j.procir.2013.01.059
12.
Berardi
,
M.
,
Martinez-Romero
,
O.
,
Elías-Zúñiga
,
A.
,
Rodríguez
,
M.
,
Ceretti
,
E.
,
Fiorentino
,
A.
,
Donzella
,
G.
, and
Avanzini
,
A.
,
2014
, “
Levator Ani Deformation During the Second Stage of Labour
,”
Proc. Inst. Mech. Eng. H
,
228
(
5
), pp.
501
508
.10.1177/0954411914533678
13.
Li
,
X.
,
Kruger
,
J. A.
,
Chung
,
J.-H.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2008
, “
Modelling Childbirth: Comparing Athlete and Non-Athlete Pelvic Floor Mechanics
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008
,
D.
Metaxas
,
L.
Axel
,
G.
Fichtinger
, and
G.
Székely
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
750
757
.10.1007/978-3-540-85990-1_90
14.
Li
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2010
, “
Effects of Fetal Head Motion on Pelvic Floor Mechanics
,”
Computational Biomechanics for Medicine
,
K.
Miller
, and
P. M. F.
Nielsen
, eds.,
Springer
,
New York
, pp.
129
137
.10.1007/978-1-4419-5874-7_14
15.
Liu
,
Y.
,
Scudder
,
M.
, and
Gimovsky
,
M. L.
,
1996
, “
CAD Modeling of the Birth Process. Part II
,”
Stud. Health Technol. Inform.
,
29
, pp.
652
666
.10.3233/978-1-60750-873-1-652
16.
Yan
,
X.
,
Kruger
,
J. A.
,
Nielsen
,
P. M. F.
, and
Nash
,
M. P.
,
2015
, “
Effects of Fetal Head Shape Variation on the Second Stage of Labour
,”
J. Biomech.
,
48
(
9
), pp.
1593
1599
.10.1016/j.jbiomech.2015.02.062
17.
Lien
,
K.-C.
,
Mooney
,
B.
,
DeLancey
,
J. O. L.
, and
Ashton-Miller
,
J. A.
,
2004
, “
Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth
,”
Obstet. Gynecol.
,
103
(
1
), pp.
31
40
.10.1097/01.AOG.0000109207.22354.65
18.
Lien
,
K.-C.
,
Morgan
,
D. M.
,
Delancey
,
J. O. L.
, and
Ashton-Miller
,
J. A.
,
2005
, “
Pudendal Nerve Stretch During Vaginal Birth: A 3D Computer Simulation
,”
Am. J. Obstet. Gynecol.
,
192
(
5
), pp.
1669
1676
.10.1016/j.ajog.2005.01.032
19.
Hoyte
,
L.
,
Damaser
,
M. S.
,
Warfield
,
S. K.
,
Chukkapalli
,
G.
,
Majumdar
,
A.
,
Choi
,
D. J.
,
Trivedi
,
A.
, and
Krysl
,
P.
,
2008
, “
Quantity and Distribution of Levator Ani Stretch During Simulated Vaginal Childbirth
,”
Am. J. Obstet. Gynecol.
,
199
(
2
), p.
198
.10.1016/j.ajog.2008.04.027
20.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
, and
Redarce
,
T.
,
2009
, “
A Biomechanical Model of the Female Reproductive System and the Fetus for the Realization of a Childbirth Virtual Simulator
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 2–6, pp.
5263
5266
.10.1109/IEMBS.2009.5334085
21.
Li
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2011
, “
Anisotropic Effects of the Levator Ani Muscle During Childbirth
,”
Biomech. Model Mechanobiol.
,
10
(
4
), pp.
485
494
.10.1007/s10237-010-0249-z
22.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
,
Redarce
,
T.
, and
Grangé
,
G.
,
2013
, “
Biomechanical Simulation of the Fetal Descent Without Imposed Theoretical Trajectory
,”
Comput. Methods Prog. Biomed.
,
111
(
2
), pp.
389
401
.10.1016/j.cmpb.2013.04.005
23.
Gerikhanov
,
Z.
,
Audinis
,
V.
, and
Lapeer
,
R.
,
2013
, “
Towards a Forward Engineered Simulation of the Cardinal Movements of Human Childbirth
,” E-Health and Bioengineering Conference (
EHB
), Iasi, Romania, Nov. 21–23, pp.
1
4
.10.1109/EHB.2013.6707394
24.
Lepage
,
J.
,
Jayyosi
,
C.
,
Lecomte-Grosbras
,
P.
,
Brieu
,
M.
,
Duriez
,
C.
,
Cosson
,
M.
, and
Rubod
,
C.
,
2015
, “
Biomechanical Pregnant Pelvic System Model and Numerical Simulation of Childbirth: Impact of Delivery on the Uterosacral Ligaments, Preliminary Results
,”
Int. Urogynecol. J.
,
26
(
4
), pp.
497
504
.10.1007/s00192-014-2498-3
25.
Krofta
,
L.
,
Havelková
,
L.
,
Urbánková
,
I.
,
Krčmář
,
M.
,
Hynčík
,
L.
, and
Feyereisl
,
J.
,
2017
, “
Finite Element Model Focused on Stress Distribution in the Levator Ani Muscle During Vaginal Delivery
,”
Int. Urogynecol. J.
,
28
(
2
), pp.
275
284
.10.1007/s00192-016-3126-1
26.
Mayeur
,
O.
,
Jeanditgautier
,
E.
,
Witz
,
J.-F.
,
Lecomte-Grosbras
,
P.
,
Cosson
,
M.
,
Rubod
,
C.
, and
Brieu
,
M.
,
2017
, “
Evaluation of Strains on Levator Ani Muscle: Damage Induced During Delivery for a Prediction of Patient Risks
,”
Computational Biomechanics for Medicine
,
A.
Wittek
,
G.
Joldes
,
P. M. F.
Nielsen
,
B. J.
Doyle
, and
K.
Miller
, eds.,
Springer International Publishing
,
Cham
, pp.
135
146
.10.1007/978-3-319-54481-6_12
27.
Maran
,
J.-C.
,
Cassagnes
,
L.
,
Delmas
,
V.
,
Musset
,
D.
,
Frydman
,
R.
,
Mage
,
G.
,
Canis
,
M.
,
Boyer
,
L.
, and
Ami
,
O.
,
2018
, “
Comparative Anatomy on 3-D MRI of the Urogenital Sinus and the Periurethral Area Before and During the Second Stage of Labor During Childbirth
,”
Surg. Radiol. Anat.
,
40
(
4
), pp.
371
380
.10.1007/s00276-017-1925-9
28.
Jean Dit Gautier
,
E.
,
Mayeur
,
O.
,
Lepage
,
J.
,
Brieu
,
M.
,
Cosson
,
M.
, and
Rubod
,
C.
,
2018
, “
Pregnancy Impact on Uterosacral Ligament and Pelvic Muscles Using a 3D Numerical and Finite Element Model: Preliminary Results
,”
Int. Urogynecol. J.
,
29
(
3
), pp.
425
430
.10.1007/s00192-017-3520-3
29.
Silva
,
M. E. T.
,
Oliveira
,
D. A.
,
Roza
,
T. H.
,
Brandão
,
S.
,
Parente
,
M. P. L.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2015
, “
Study on the Influence of the Fetus Head Molding on the Biomechanical Behavior of the Pelvic Floor Muscles, During Vaginal Delivery
,”
J. Biomech.
,
48
(
9
), pp.
1600
1605
.10.1016/j.jbiomech.2015.02.032
30.
Liu
,
Y.
,
Scudder
,
M.
, and
Gimovsky
,
M. L.
,
1995
, “
CAD Modelling of the Birth Process: A Preliminary Report
,”
Proceedings of Medicine Meets Virtual Reality Conference III: Interactive Technology & the New Paradigm for Healthcare
, San Diego, CA, Jan 19–22, pp.
211
220
.https://www.semanticscholar.org/paper/Cad-Modelling-of-the-Birth-Process%3A-a-Preliminary-Liu-Gimovsky/f928d2dc43788fc3154c684f7acf28499d2c8c6f
31.
Sindhwani
,
N.
,
Bamberg
,
C.
,
Famaey
,
N.
,
Callewaert
,
G.
,
Dudenhausen
,
J. W.
,
Teichgräber
,
U.
, and
Deprest
,
J.
,
2017
, “
In Vivo Evidence of Significant Levator Ani Muscle Stretch on MR Images of a Live Childbirth
,”
Am. J. Obstet. Gynecol.
,
217
(
2
), p.
194
.10.1016/j.ajog.2017.04.014
32.
Bamberg
,
C.
,
Deprest
,
J.
,
Sindhwani
,
N.
,
Teichgräberg
,
U.
,
Güttler
,
F.
,
Dudenhausen
,
J. W.
,
Kalache
,
K. D.
, and
Henrich
,
W.
,
2017
, “
Evaluating Fetal Head Dimension Changes During Labor Using Open Magnetic Resonance Imaging
,”
J. Perinatal Med.
,
45
(
3
), pp.
305
308
.10.1515/jpm-2016-0005
33.
Janda
,
Š.
,
van der Helm
,
F. C. T.
, and
de Blok
,
S. B.
,
2003
, “
Measuring Morphological Parameters of the Pelvic Floor for Finite Element Modelling Purposes
,”
J. Biomech.
,
36
(
6
), pp.
749
757
.10.1016/S0021-9290(03)00008-3
34.
Martins
,
J. A. C.
,
Pato
,
M. P. M.
,
Pires
,
E. B.
,
Jorge
,
R. M. N.
,
Parente
,
M.
, and
Mascarenhas
,
T.
,
2007
, “
Finite Element Studies of the Deformation of the Pelvic Floor
,”
Ann. New York Acad. Sci.
,
1101
(
1
), pp.
316
334
.10.1196/annals.1389.019
35.
Parente
,
M. P. L.
,
Jorge
,
R. M. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Martins
,
J. A. C.
,
2007
, “
Deformation of the Pelvic Floor Muscles During a Vaginal Delivery
,”
Int. Urogynecol. J.
,
19
(
1
), pp.
65
71
.10.1007/s00192-007-0388-7
36.
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Calvo
,
B.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2016
, “
Numerical Simulation of the Damage Evolution in the Pelvic Floor Muscles During Childbirth
,”
J. Biomech.
,
49
(
4
), pp.
594
601
.10.1016/j.jbiomech.2016.01.014
37.
Parente
,
M. P.
,
Natal Jorge
,
R. M.
,
Mascarenhas
,
T.
, and
Silva-Filho
,
A. L.
,
2010
, “
The Influence of Pelvic Muscle Activation During Vaginal Delivery
,”
Obstet. Gynecol.
,
115
(
4
), pp.
804
808
.10.1097/AOG.0b013e3181d534cd
38.
Parente
,
M. P. L.
,
Jorge
,
R. M. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Martins
,
J. A. C.
,
2009
, “
The Influence of an Occipito-Posterior Malposition on the Biomechanical Behavior of the Pelvic Floor
,”
Eur. J. Obstet. Gynecol. Reproduct. Biol.
,
144
, pp.
S166
S169
.10.1016/j.ejogrb.2009.02.033
39.
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Calvo
,
B.
,
Mascarenhas
,
T.
, and
Jorge
,
R. M. N.
,
2016
, “
A Biomechanical Analysis on the Impact of Episiotomy During Childbirth
,”
Biomech. Model Mechanobiol.
,
15
(
6
), pp.
1523
1534
.10.1007/s10237-016-0781-6
40.
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Calvo
,
B.
,
Mascarenhas
,
T.
, and
Jorge
,
R. M. N.
,
2017
, “
The Management of Episiotomy Technique and Its Effect on Pelvic Floor Muscles During a Malposition Childbirth
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
11
), pp.
1249
1259
.10.1080/10255842.2017.1349762
41.
d'Aulignac
,
D.
,
Martins
,
J. A. C.
,
Pires
,
E. B.
,
Mascarenhas
,
T.
, and
Jorge
,
R. M. N.
,
2005
, “
A Shell Finite Element Model of the Pelvic Floor Muscles
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
339
347
.10.1080/10255840500405378
42.
Parente
,
M. P.
,
Natal Jorge
,
R. M.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Silva-Filho
,
A. L.
,
2010
, “
Computational Modeling Approach to Study the Effects of Fetal Head Flexion During Vaginal Delivery
,”
Am. J. Obstet. Gynecol.
,
203
(
3
), p.
217
.10.1016/j.ajog.2010.03.038
43.
Vila Pouca
,
M. C. P.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2018
, “
On the Effect of Labour Durations Using an Anisotropic Visco-Hyperelastic-Damage Approach to Simulate Vaginal Deliveries
,”
J. Mech. Behav. Biomed. Mater.
,
88
, pp.
120
126
.10.1016/j.jmbbm.2018.08.011
44.
Pouca
,
M. C. P. V.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
, and
Jorge
,
R. M. N.
,
2018
, “
Viscous Effects in Pelvic Floor Muscles During Childbirth: A Numerical Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
3
), p.
e2927
.10.1002/cnm.2927
45.
Lapeer
,
R.
,
Gerikhanov
,
Z.
,
Sadulaev
,
S.-M.
,
Audinis
,
V.
,
Rowland
,
R.
,
Crozier
,
K.
, and
Morris
,
E.
,
2019
, “
A Computer-Based Simulation of Childbirth Using the Partial Dirichlet–Neumann Contact Method With Total Lagrangian Explicit Dynamics on the GPU
,”
Biomech. Model Mechanobiol.
,
18
(
3
), pp.
681
700
.10.1007/s10237-018-01109-x
46.
Routzong
,
M. R.
,
Moalli
,
P. A.
,
Maiti
,
S.
,
De Vita
,
R.
, and
Abramowitch
,
S. D.
,
2019
, “
Novel Simulations to Determine the Impact of Superficial Perineal Structures on Vaginal Delivery
,”
Interface Focus
,
9
(
4
), p.
20190011
.10.1098/rsfs.2019.0011
47.
Lapeer
,
R.
,
Audinis
,
V.
,
Gerikhanov
,
Z.
, and
Dupuis
,
O.
,
2014
, “
A Computer-Based Simulation of Obstetric Forceps Placement
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014
,
P.
Golland
,
N.
Hata
,
C.
Barillot
,
J.
Hornegger
, and
R.
Howe
, eds.,
Springer International Publishing
,
Cham
, pp.
57
64
.10.1007/978-3-319-10470-6_8
48.
Bailet
,
M.
,
Zara
,
F.
, and
Promayon
,
E.
,
2014
, “
Biomechanical Model of the Fetal Head for Interactive Childbirth Simulation
,” SURGETICA 2014 Computer-Assisted Medical Interventions: Scientific Problems, Tools and Clinical Applications, Chambéry, France, pp.
116
119
, HAL No.
hal-01301093
.https://hal.archives-ouvertes.fr/hal-01301093/document
49.
Oliveira
,
D.
,
Pouca
,
M. V.
,
Ferreira
,
J.
, and
Mascarenhas
,
T.
,
2019
, “
Episiotomy: The Biomechanical Impact of Multiple Small Incisions During a Normal Vaginal Delivery
,”
Interface Focus
,
9
(
5
), p.
20190027
.10.1098/rsfs.2019.0027
50.
Bailet
,
M.
,
Zara
,
F.
, and
Promayon
,
E.
,
2013
, “
Shell Finite Element Model for Interactive Foetal Head Deformation During Childbirth
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
sup1
), pp.
312
314
.10.1080/10255842.2013.815928
51.
Li
,
X.
,
Kruger
,
J. A.
,
Chung
,
J.-H.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2008
, “
Modelling the Pelvic Floor for Investigating Difficulties During Childbirth
,” Proc. SPIE 6916,
Medical Imaging 2008: Physiology, Function, and Structure From Medical Images
, San Diego, CA, Mar. 12, p. 69160V.10.1117/12.769898
52.
Li
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2010
, “
Effects of Nonlinear Muscle Elasticity on Pelvic Floor Mechanics During Vaginal Childbirth
,”
ASME J. Biomech. Eng.
,
132
(
11
), p. 111010.10.1115/1.4002558
53.
Yan
,
X.
,
Kruger
,
J. A.
,
Nash
,
M. P.
, and
Nielsen
,
P. M. F.
,
2012
, “
Effects of Levator Ani Muscle Morphology on the Mechanics of Vaginal Childbirth
,”
Computational Biomechanics for Medicine
,
P. M. F.
Nielsen
,
A.
Wittek
, and
K.
Miller
, eds.,
Springer
,
New York
, pp.
63
75
.10.1007/978-1-4614-3172-5_8
54.
Oliveira
,
D.
,
Parente
,
M.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R.
,
2018
, “
Biomechanical Analysis of the Damage in the Pelvic Floor Muscles During Childbirth
,”
Women's Health and Biomechanics: Where Medicine and Engineering Meet
,
S.
Brandão
,
T.
Da Roza
,
I.
Ramos
, and
T.
Mascarenhas
, eds.,
Springer International Publishing
,
Cham
, pp.
133
142
.10.1007/978-3-319-71574-2_11
55.
Vila Pouca
,
M. C. P.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Mascarenhas
,
M. T.
, and
Natal Jorge
,
R. M.
,
2019
, “
Simulation of the Uterine Contractions and Foetus Expulsion Using a Chemo-Mechanical Constitutive Model
,”
Biomech. Model Mechanobiol.
,
18
(
3
), pp.
829
843
.10.1007/s10237-019-01117-5
56.
Oliveira
,
D. A.
,
Silva
,
M. E. T.
,
Pouca
,
M. V.
,
Parente
,
M. P. L.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2020
, “
Biomechanical Simulation of Vaginal Childbirth: The Colors of the Pelvic Floor Muscles
,”
Computational Biomechanics for Medicine
,
M. P.
Nash
,
P. M. F.
Nielsen
,
A.
Wittek
,
K.
Miller
, and
G. R.
Joldes
, eds.,
Springer International Publishing
,
Cham
, pp.
1
17
.10.1007/978-3-030-15923-8_1
57.
Gonik
,
B.
,
Zhang
,
N.
, and
Grimm
,
M. J.
,
2003
, “
Defining Forces That Are Associated With Shoulder Dystocia: The Use of a Mathematic Dynamic Computer Model
,”
Am. J. Obstet. Gynecol.
,
188
(
4
), pp.
1068
1072
.10.1067/mob.2003.250
58.
Gonik
,
B.
,
Zhang
,
N.
, and
Grimm
,
M. J.
,
2003
, “
Prediction of Brachial Plexus Stretching During Shoulder Dystocia Using a Computer Simulation Model
,”
Am. J. Obstet. Gynecol.
,
189
(
4
), pp.
1168
1172
.10.1067/S0002-9378(03)00578-7
59.
Grimm
,
M. J.
,
Costello
,
R. E.
, and
Gonik
,
B.
,
2010
, “
Effect of Clinician-Applied Maneuvers on Brachial Plexus Stretch During a Shoulder Dystocia Event: Investigation Using a Computer Simulation Model
,”
Am. J. Obstet. Gynecol.
,
203
(
4
), p.
339
.10.1016/j.ajog.2010.05.002
60.
Lapeer
,
R.
,
Gerikhanov
,
Z.
, and
Audinis
,
V.
,
2014
, “
A Computer-Based Simulation of Vacuum Extraction During Childbirth
,”
SIMULIA Regional User Meeting RUM
, Warrington, UK, Nov. 4–5, pp.
1
12
.https://people.uea.ac.uk/en/publications/a-computerbased-simulation-of-vacuum-extraction-during-childbirth(847c7c53-3d2f-45e6-96a1-0db76a954239).html
61.
Li
,
X.
,
Kruger
,
J.
,
Nash
,
M.
, and
Nielsen
,
P.
,
2009
, “
Modelling Fetal Head Motion and Its Mechanical Interaction With the Pelvic Floor During Childbirth
,”
39th International Meeting of the International Continence Society
,
Wiley-Liss
, San Francisco, CA, Sept. 29–Oct. 3, p.
81
. https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
62.
Pintar
,
F. A.
,
Mayer
,
R. G.
,
Yoganandan
,
N.
, and
Sun
,
E.
,
2000
, “
Child Neck Strength Characteristics Using an Animal Model
,”
Stapp Car Crash J.
,
44
, pp.
77
83
.10.4271/2000-01-SC06
63.
Rydevik
,
B. L.
,
Kwan
,
M. K.
,
Myers
,
R. R.
,
Brown
,
R. A.
,
Triggs
,
K. J.
,
Woo
,
S. L.-Y.
, and
Garfin
,
S. R.
,
1990
, “
An In Vitro Mechanical and Histological Study of Acute Stretching on Rabbit Tibial Nerve
,”
J. Orthop. Res.
,
8
(
5
), pp.
694
701
.10.1002/jor.1100080511
64.
Jansova
,
M.
,
Kalis
,
V.
,
Rusavy
,
Z.
,
Zemcik
,
R.
,
Lobovsky
,
L.
, and
Laine
,
K.
,
2014
, “
Modeling Manual Perineal Protection During Vaginal Delivery
,”
Int. Urogynecol. J.
,
25
(
1
), pp.
65
71
.10.1007/s00192-013-2164-1
65.
Jansova
,
M.
,
Kalis
,
V.
,
Rusavy
,
Z.
,
Räisänen
,
S.
,
Lobovsky
,
L.
, and
Laine
,
K.
,
2017
, “
Fetal Head Size and Effect of Manual Perineal Protection
,”
PLoS One
,
12
(
12
), p.
e0189842
.10.1371/journal.pone.0189842
66.
Sorbe
,
B.
, and
Dahlgren
,
S.
,
1983
, “
Some Important Factors in the Molding of the Fetal Head During Vaginal Delivery—A Photographic Study
,”
Int. J. Gynecol. Obstet.
,
21
(
3
), pp.
205
212
.10.1016/0020-7292(83)90081-4
67.
Lapeer
,
R. J.
, and
Prager
,
R. W.
,
2001
, “
Fetal Head Moulding: Finite Element Analysis of a Fetal Skull Subjected to Uterine Pressures During the First Stage of Labour
,”
J. Biomech.
,
34
(
9
), pp.
1125
1133
.10.1016/S0021-9290(01)00070-7
68.
Sizer
,
A. R.
, and
Nirmal
,
D. M.
,
2000
, “
Occipitoposterior Position: Associated Factors and Obstetric Outcome in Nulliparas
,”
Obstet. Gynecol.
,
96
(
5, Part 1
), pp.
749
752
.10.1016/s0029-7844(00)01030-9
69.
Hage-Fransen
,
M. A. H.
,
Wiezer
,
M.
,
Otto
,
A.
,
Wieffer-Platvoet
,
M. S.
,
Slotman
,
M. H.
,
Sanden
,
M. W. G. N. der
, and
Pool-Goudzwaard
,
A. L.
,
2020
, “
Pregnancy- and Obstetric-Related Risk Factors for Urinary Incontinence, Fecal Incontinence, or Pelvic Organ Prolapse Later in Life: A Systematic Review and Meta-Analysis
,”
Acta Obstet. Gynecol. Scand.
, ePub.10.1111/aogs.14027
70.
Su
,
K.-M.
,
Yu
,
M.-H.
,
Su
,
H.-Y.
,
Wang
,
Y.-C.
, and
Su
,
K.-C.
,
2016
, “
Investigating Biomechanics of Different Materials and Angles of Blades of Forceps for Operative Delivery by Finite Element Analysis
,”
J. Mech. Med. Biol.
,
16
(
04
), p.
1650046
.10.1142/S0219519416500469
71.
Doumouchtsis
,
S. K.
, and
Arulkumaran
,
S.
,
2008
, “
Head Trauma After Instrumental Births
,”
Clin. Perinatol.
,
35
(
1
), pp.
69
83
.10.1016/j.clp.2007.11.006
72.
Edozien
,
L. C.
,
2007
, “
Towards Safe Practice in Instrumental Vaginal Delivery
,”
Best Pract. Res. Clin. Obstet. Gynaecol.
,
21
(
4
), pp.
639
655
.10.1016/j.bpobgyn.2007.03.006
73.
Barnes
,
R. S. F.
,
1883
,
A Manual of Midwifery for Midwives
,
Smith, Elder, & Co
., London, UK.
74.
Menticoglou
,
S.
,
2018
, “
Shoulder Dystocia: Incidence, Mechanisms, and Management Strategies
,”
Int J Womens Health
,
10
, pp.
723
732
.10.2147/IJWH.S175088
75.
Gherman
,
R. B.
,
Ouzounian
,
J. G.
, and
Goodwin
,
T. M.
,
1998
, “
Obstetric Maneuvers for Shoulder Dystocia and Associated Fetal Morbidity
,”
Am. J. Obstet. Gynecol.
,
178
(
6
), pp.
1126
1130
.10.1016/S0002-9378(98)70312-6
76.
Ren
,
S.
,
Xie
,
B.
,
Wang
,
J.
, and
Rong
,
Q.
,
2015
, “
Three-Dimensional Modeling of the Pelvic Floor Support Systems of Subjects With and Without Pelvic Organ Prolapse
,”
Biomed. Res. Int.
,
2015
, pp.
1
9
.10.1155/2015/845985
77.
Giraudet
,
G.
,
Patrouix
,
L.
,
Fontaine
,
C.
,
Demondion
,
X.
,
Cosson
,
M.
, and
Rubod
,
C.
,
2018
, “
Three Dimensional Model of the Female Perineum and Pelvic Floor Muscles
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
226
, pp.
1
6
.10.1016/j.ejogrb.2018.05.011
78.
Feil
,
P.
, and
Sora
,
M.
,
2014
, “
A 3D Reconstruction Model of the Female Pelvic Floor by Using Plastinated Cross Sections
,”
Austin J. Anat.
,
1
(
5
), p.
1022
.https://austinpublishinggroup.com/anatomy/fulltext/Anatomy-v1-id1022.php
79.
Gatellier
,
M.-A.
,
dit Gautier
,
E. J.
,
Mayeur
,
O.
,
Brieu
,
M.
,
Cosson
,
M.
, and
Rubod
,
C.
,
2020
, “
Complete 3 Dimensional Reconstruction of Parturient Pelvic Floor
,”
J. Gynecol. Obstet. Human Reprod.
,
49
(
1
), p.
101635
.10.1016/j.jogoh.2019.101635
80.
Wu
,
Y.
,
Hikspoors
,
J. P. J. M.
,
Mommen
,
G.
,
Dabhoiwala
,
N. F.
,
Hu
,
X.
,
Tan
,
L.-W.
,
Zhang
,
S.-X.
, and
Lamers
,
W. H.
,
2020
, “
Interactive Three-Dimensional Teaching Models of the Female and Male Pelvic Floor
,”
Clin. Anat.
,
33
(
2
), pp.
275
285
.10.1002/ca.23508
81.
Brandão
,
F. S. Q.
,
da
,
S.
,
Parente
,
M. P. L.
,
Rocha
,
P. A. G. G.
,
Saraiva
,
M. T.
,
da
,
Q. e C.
,
de
,
M.
,
Ramos
,
I. M. A. P.
, and
Jorge
,
R. M. N.
,
2016
, “
Modeling the Contraction of the Pelvic Floor Muscles
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
347
356
.10.1080/10255842.2015.1028031
82.
Hiscox
,
L. V.
,
Johnson
,
C. L.
,
Barnhill
,
E.
,
McGarry
,
M. D. J.
,
Huston
,
J.
,
Beek
,
E. J. R. van
,
Starr
,
J. M.
, and
Roberts
,
N.
,
2016
, “
Magnetic Resonance Elastography (MRE) of the Human Brain: Technique, Findings and Clinical Applications
,”
Phys. Med. Biol.
,
61
(
24
), pp.
R401
R437
.10.1088/0031-9155/61/24/R401
83.
Dargar
,
S.
,
Akyildiz
,
A. C.
, and
De
,
S.
,
2017
, “
In Situ Mechanical Characterization of Multilayer Soft Tissue Using Ultrasound Imaging
,”
IEEE Trans. Biomed. Eng.
,
64
(
11
), pp.
2595
2606
.10.1109/TBME.2016.2644651
You do not currently have access to this content.