Abstract

Human motion capture (MOCAP) systems are vital while determining the loads occurring at the joints. Most of the clinical MOCAP systems are very costly, requiring investment and infrastructure. Therefore, alternative technologies are in demand. In this study, a novel markerless wearable MOCAP system was assessed for its compatibility with a biomechanical modeling software. To collect evidence, experiments were designed in two stages for quantifying the range of motion (ROM) of the hip joint, in vitro and in vivo. Three constrained single-plane motions—abduction/adduction, flexion/extension, and internal/external rotation movements of the active leg—were analyzed. The data were collected from 14 healthy volunteers, using the wearable system and a medical grade optoelectronic MOCAP system simultaneously and compared against. For the in vitro study, the root-mean-square error (RMSE) for the abduction/adduction motion of the hip joint was calculated as 0.11 deg/0.30 deg and 0.11 deg/0.09 deg, respectively, for the wearable and the opto-electronic system. The in vivo Bland–Altman plots showed that the two system data are comparable. The simulation software is found compatible to run the simulations in offline mode. The wearable system could be utilized in the field of biomechanics software for running the kinetic simulations. The results demonstrated that the wearable system could be an alternative in the field of biomechanics based on the evidence collected.

References

1.
Mihcin
,
S.
,
Kose
,
H.
,
Cizmeciogullari
,
S.
,
Ciklacandir
,
S.
,
Kocak
,
M.
,
Tosun
,
A.
, and
Akan
,
A.
,
2019
, “
Investigation of Wearable Motion Capture System Towards Biomechanical Modelling
,” Medical Measurements and Applications (
MeMeA
), Istanbul, Turkey, June 26–28, pp. 1–5.10.1109/MeMeA.2019.8802208
2.
Estévez-García
,
R.
,
Martín-Gutiérrez
,
J.
,
Mendoza
,
S. M.
,
Marante
,
J. R.
,
Chinea-Martín
,
P.
,
Soto-Martín
,
O.
, and
Lodeiro-Santiago
,
M.
,
2015
, “
Open Data Motion Capture: MOCAP-ULL Database
,”
Procedia Comput. Sci.
,
75
, pp.
316
326
.10.1016/j.procs.2015.12.253
3.
Johansson
,
G.
,
1973
, “
Visual Perception of Biological Motion and a Model for Its Analysis
,”
Percept. Psychophys.
,
14
(
2
), pp.
201
211
.10.3758/BF03212378
4.
Menache
,
A.
,
2000
,
Understanding Motion Capture for Computer Animation and Video Games
,
Morgan Kaufmann Publishers, Burlington, MA
.
5.
Corazza
,
S.
,
Mündermann
,
L.
,
Chaudhari
,
A. M.
,
Demattio
,
T.
,
Cobelli
,
C.
, and
Andriacchi
,
T. P.
,
2006
, “
A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
1019
1029
.10.1007/s10439-006-9122-8
6.
Ohgi
,
Y.
,
2006
, “
MEMS Sensor Application for the Motion Analysis in Sports Science
,”
ABCM Symposium Series in Mechatronics
, Vol.
2
, Brazilia, pp.
501
508
.
7.
Ahn
,
M. H.
,
Aliu
,
E.
,
Andringa
,
S.
,
Aoki
,
S.
,
Aoyama
,
Y.
,
Argyriades
,
J.
,
Asakura
,
K.
,
Ashie
,
R.
,
Berghaus
,
F.
,
Berns
,
H. G.
,
Bhang
,
H.
,
Blondel
,
A.
,
Borghi
,
S.
,
Bouchez
,
J.
,
Boyd
,
S. C.
,
Burguet-Castell
,
J.
,
Casper
,
D.
,
Catala
,
J.
,
Cavata
,
C.
,
Cervera
,
A.
,
Chen
,
S. M.
,
Cho
,
K. O.
,
Choi
,
J. H.
,
Dore
,
U.
,
Echigo
,
S.
,
Espinal
,
X.
,
Fechner
,
M.
,
Fernandez
,
E.
,
Fujii
,
K.
,
Fujii
,
Y.
,
Fukuda
,
S.
,
Fukuda
,
Y.
,
Gomez-Cadenas
,
J.
,
Gran
,
R.
,
Hara
,
T.
,
Hasegawa
,
M.
,
Hasegawa
,
T.
,
Hayashi
,
K.
,
Hayato
,
Y.
,
Helmer
,
R. L.
,
Higuchi
,
I.
,
Hill
,
J.
,
Hiraide
,
K.
,
Hirose
,
E.
,
Hosaka
,
J.
,
Ichikawa
,
A. K.
,
Ieiri
,
M.
,
Iinuma
,
M.
,
Ikeda
,
A.
,
Inagaki
,
T.
,
Ishida
,
T.
,
Ishihara
,
K.
,
Ishii
,
H.
,
Ishii
,
T.
,
Ishino
,
H.
,
Ishitsuka
,
M.
,
Itow
,
Y.
,
Iwashita
,
T.
,
Jang
,
H. I.
,
Jang
,
J. S.
,
Jeon
,
E. J.
,
Jeong
,
I. S.
,
Joo
,
K. K.
,
Jover
,
G.
,
Jung
,
C. K.
,
Kajita
,
T.
,
Kameda
,
J.
,
Kaneyuki
,
K.
,
Kang
,
B. H.
,
Kato
,
I.
,
Kato
,
Y.
,
Kearns
,
E.
,
Kerr
,
D.
,
Kim
,
C. O.
,
Khabibullin
,
M.
,
Khotjantsev
,
A.
,
Kielczewska
,
D.
,
Kim
,
B. J.
,
Kim
,
H. I.
,
Kim
,
J. H.
,
Kim
,
J. Y.
,
Kim
,
S. B.
,
Kitamura
,
M.
,
Kitching
,
P.
,
Kobayashi
,
K.
,
Kobayashi
,
T.
,
Kohama
,
M.
,
Konaka
,
A.
,
Koshio
,
Y.
,
Kropp
,
W.
,
Kubota
,
J.
,
Kudenko
,
Y.
,
Kume
,
G.
,
Kuno
,
Y.
,
Kurimoto
,
Y.
,
Kutter
,
T.
,
Learned
,
J.
,
Likhoded
,
S.
,
Lim
,
I. T.
,
Lim
,
S. H.
,
Loverre
,
P. F.
,
Ludovici
,
L.
,
Maesaka
,
H.
,
Mallet
,
J.
,
Mariani
,
C.
,
Martens
,
K.
,
Maruyama
,
T.
,
Matsuno
,
S.
,
Matveev
,
V.
,
Mauger
,
C.
,
McConnel Mahn
,
K. B.
,
McGrew
,
C.
,
Mikheyev
,
S.
,
Minakawa
,
M.
,
Minamino
,
A.
,
Mine
,
S.
,
Mineev
,
O.
,
Mitsuda
,
C.
,
Mitsuka
,
G.
,
Miura
,
M.
,
Moriguchi
,
Y.
,
Morita
,
T.
,
Moriyama
,
S.
,
Nakadaira
,
T.
,
Nakahata
,
M.
,
Nakamura
,
K.
,
Nakano
,
I.
,
Nakata
,
F.
,
Nakaya
,
T.
,
Nakayama
,
S.
,
Namba
,
T.
,
Nambu
,
R.
,
Nawang
,
S.
,
Nishikawa
,
K.
,
Nishino
,
H.
,
Nishiyama
,
S.
,
Nitta
,
K.
,
Noda
,
S.
,
Noumi
,
H.
,
Nova
,
F.
,
Novella
,
P.
,
Obayashi
,
Y.
,
Okada
,
A.
,
Okumura
,
K.
,
Okumura
,
M.
,
Onchi
,
M.
,
Ooyabu
,
T.
,
Oser
,
S. M.
,
Otaki
,
T.
,
Oyama
,
Y.
,
Pac
,
M. Y.
,
Park
,
H.
,
Pierre
,
F.
,
Rodriguez
,
A.
,
Saji
,
C.
,
Sakai
,
A.
,
Sakuda
,
M.
,
Sakurai
,
N.
,
Sanchez
,
F.
,
Sarrat
,
A.
,
Sasaki
,
T.
,
Sato
,
H.
,
Sato
,
K.
,
Scholberg
,
K.
,
Schroeter
,
R.
,
Sekiguchi
,
M.
,
Seo
,
E.
,
Sharkey
,
E.
,
Shima
,
A.
,
Shiozawa
,
M.
,
Shiraishi
,
K.
,
Sitjes
,
G.
,
Smy
,
M.
,
So
,
H.
,
Sobel
,
H.
,
Sorel
,
M.
,
Stone
,
J.
,
Sulak
,
L.
,
Suga
,
Y.
,
Suzuki
,
A.
,
Suzuki
,
Y.
,
Suzuki
,
Y.
,
Tada
,
M.
,
Takahashi
,
T.
,
Takasaki
,
M.
,
Takatsuki
,
M.
,
Takenaga
,
Y.
,
Takenaka
,
K.
,
Takeuchi
,
H.
,
Takeuchi
,
Y.
,
Taki
,
K.
,
Takubo
,
Y.
,
Tamura
,
N.
,
Tanaka
,
H.
,
Tanaka
,
K.
,
Tanaka
,
M.
,
Tanaka
,
Y.
,
Tashiro
,
K.
,
Terri
,
R.
,
T'Jampens
,
S.
,
Tornero-Lopez
,
A.
,
Toshito
,
T.
,
Totsuka
,
Y.
,
Ueda
,
S.
,
Vagins
,
M.
,
Whitehead
,
L.
,
Walter
,
C. W.
,
Wang
,
W.
,
Wilkes
,
R. J.
,
Yamada
,
S.
,
Yamada
,
Y.
,
Yamamoto
,
S.
,
Yamanoi
,
Y.
,
Yanagisawa
,
C.
,
Yershov
,
N.
,
Yokoyama
,
H.
,
Yokoyama
,
M.
,
Yoo
,
J.
,
Yoshida
,
M.
, and
Zalipska
,
J.
,
2006
, “
Measurement of Neutrino Oscillation by the K2K Experiment
,”
Phys. Rev. D
,
74
(
7
), p.
72003
.10.1103/PhysRevD.74.072003
8.
Bortolini
,
M.
,
Faccio
,
M.
,
Gamberi
,
M.
, and
Pilati
,
F.
,
2020
, “
Motion Analysis System (MAS) for Production and Ergonomics Assessment in the Manufacturing Processes
,”
Comput. Ind. Eng.
,
139
, p.
105485
.10.1016/j.cie.2018.10.046
9.
Zijlstra
,
W.
, and
Aminian
,
K.
,
2007
, “
Mobility Assessment in Older People: New Possibilities and Challenges
,”
Eur. J. Ageing
,
4
(
1
), pp.
3
12
.10.1007/s10433-007-0041-9
10.
Sabatini
,
A. M.
,
Martelloni
,
C.
,
Scapellato
,
S.
, and
Cavallo
,
F.
,
2005
, “
Assessment of Walking Features From Foot Inertial Sensing
,”
IEEE Trans. Bio-Med. Eng.
,
52
(
3
), pp.
486
494
.10.1109/TBME.2004.840727
11.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
12.
Schepers
,
H. M.
,
Koopman
,
H. F. J. M.
, and
Veltink
,
P. H.
,
2007
, “
Ambulatory Assessment of Ankle and Foot Dynamics
,”
IEEE Trans. Bio-Med. Eng.
,
54
(
5
), pp.
895
902
.10.1109/TBME.2006.889769
13.
Fluit
,
R.
,
Andersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
14.
Luinge
,
H. J.
, and
Veltink
,
P. H.
,
2005
, “
Measuring Orientation of Human Body Segments Using Miniature Gyroscopes and Accelerometers
,”
Med. Biol. Eng. Comput.
,
43
(
2
), pp.
273
282
.10.1007/BF02345966
15.
Roetenberg
,
D.
,
Luinge
,
H.
, and
Slycke
,
P.
,
2009
, “
Xsens MVN: Full 6 DOF Human Motion Tracking Using Miniature Inertial Sensors
,” Xsens Motion Technologies BV,
Report
.https://www.researchgate.net/publication/239920367_Xsens_MVN_Full_6DOF_human_motion_tracking_using_miniature_inertial_sensors
16.
Karatsidis
,
A.
,
Bellusci
,
G.
,
Schepers
,
H.
,
de Zee
,
M.
,
Andersen
,
M.
, and
Veltink
,
P.
,.
2016
, “
Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture
,”
Sensors
,
17
(
12
), p.
75
.10.3390/s17010075
17.
Fiedler
,
B. A.
,
2016
,
Managing Medical Devices Within a Regulatory Framework
,
Elsevier
, Amsterdam, The Netherlands.
18.
Nagymáté
,
G.
, and
Kiss
,
R. M.
,
1970
, “
Application of OptiTrack Motion Capture Systems in Human Movement Analysis: A Systematic Literature Review
,”
Recent Innovations Mechatronics
,
5
(
1
), pp.
1
9
.http://hdl.handle.net/2437/255360
19.
Optical Motion Capture Software, 2019, “Optical Motion Capture Software,” NaturalPoint, Inc., Corvallis, OR, accessed
Feb. 18, 2019, https://optitrack.com/software/
20.
Furtado
,
D. A.
,
Pereira
,
A. A.
,
Andrade
,
A. O.
,
Bellomo
,
D. P.
, Jr.
, and
da Silva
,
M. R.
,
2013
, “
A Specialized Motion Capture System for Real-Time Analysis of Mandibular Movements Using Infrared Cameras
,”
Biomed. Eng. OnLine
,
12
(
1
), p. 17.10.1186/1475-925X-12-17
21.
Perry
,
J.
, and
Burnfield
,
J. M.
,
2010
, “Gait Analysis: Normal and Pathological Function, Slack Incorporated,”
J. Sports Sci. Med.
, 9(2), p. 353.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761742/
22.
Giavarina
,
D.
,
2015
, “
Understanding Bland Altman Analysis
,”
Biochem. Med.
,
25
(
2
), pp.
141
151
.10.11613/BM.2015.015
23.
Mihcin
,
S.
,
2019
, “
Methodology on Co-Registration of MRI and Optoelectronic Motion Capture Marker Sets: In-Vivo Wrist Case Study
,”
Hittite J. Sci. Eng.
,
6
(
2
), pp.
99
107
.10.17350/HJSE19030000134
24.
Kessler
,
S. E.
,
Rainbow
,
M. J.
,
Lichtwark
,
G. A.
,
Cresswell
,
A. G.
,
D'Andrea
,
S. E.
,
Konow
,
N.
, and
Kelly
,
L. A.
,
2019
, “
A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics
,”
Front Bioeng. Biotechnol.
,
7
, p.
199
. 10.3389/fbioe.2019.00199
25.
Çizmecioğullart
,
S.
,
Mihçin
,
Ş
,
Akan
,
A.
,
Keskin
,
Y.
,
Ürkmez
,
B.
, and
Aydın
,
T.
,
2018
, “
Cut-Off Frequency Estimation Methods for Biomechanical Data Filtering
,” Medical Technologies National Congress (
TIPTEKNO
), Magusa, Cyprus, Nov. 8–10, pp.
1
4
.10.1109/TIPTEKNO.2018.8596916
26.
van der Kruk
,
E.
, and
Reijne
,
M. M.
,
2018
, “
Accuracy of Human Motion Capture Systems for Sport Applications; State-of-the-Art Review
,”
Eur. J. Sport Sci.
,
18
(
6
), pp.
806
819
.10.1080/17461391.2018.1463397
27.
van Stralen
,
K. J.
,
Dekker
,
F. W.
,
Zoccali
,
C.
, and
Jager
,
K. J.
,
2012
, “
Measuring Agreement, More Complicated Than It Seems
,”
Nephron Clin. Pract.
,
120
(
3
), pp.
c162
c167
.10.1159/000337798
You do not currently have access to this content.