Abstract

Myocardial bridging (MB) and coronary atherosclerotic stenosis can impair coronary blood flow and may cause myocardial ischemia or even heart attack. It remains unclear how MB and stenosis are similar or different regarding their impacts on coronary hemodynamics. The purpose of this study was to compare the hemodynamic effects of coronary stenosis and MB using experimental and computational fluid dynamics (CFD) approaches. For CFD modeling, three MB patients with different levels of lumen obstruction, mild, moderate, and severe were selected. Patient-specific left anterior descending (LAD) coronary artery models were reconstructed from biplane angiograms. For each MB patient, the virtually healthy and stenotic models were also simulated for comparison. In addition, an in vitro flow-loop was developed, and the pressure drop was measured for comparison. The CFD simulations results demonstrated that the difference between MB and stenosis increased with increasing MB/stenosis severity and flowrate. Experimental results showed that increasing the MB length (by 140%) only had significant impact on the pressure drop in the severe MB (39% increase at the exercise), but increasing the stenosis length dramatically increased the pressure drop in both moderate and severe stenoses at all flow rates (31% and 93% increase at the exercise, respectively). Both CFD and experimental results confirmed that the MB had a higher maximum and a lower mean pressure drop in comparison with the stenosis, regardless of the degree of lumen obstruction. A better understanding of MB and atherosclerotic stenosis may improve the therapeutic strategies in coronary disease patients and prevent acute coronary syndromes.

References

References
1.
Thygesen
,
K.
,
Alpert
,
J. S.
, and
White
,
H. D.
,
2007
, “
Universal Definition of Myocardial Infarction
,”
J. Am. Coll. Cardiol.
,
50
(
22
), pp.
2173
2195
.10.1016/j.jacc.2007.09.011
2.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
274
282
.10.1115/1.2891384
3.
Herrington
,
W.
,
Lacey
,
B.
,
Sherliker
,
P.
,
Armitage
,
J.
, and
Lewington
,
S.
,
2016
, “
Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease
,”
Circ. Res.
,
118
(
4
), pp.
535
546
.10.1161/CIRCRESAHA.115.307611
4.
Tarantini
,
G.
,
Migliore
,
F.
,
Cademartiri
,
F.
,
Fraccaro
,
C.
, and
Iliceto
,
S.
,
2016
, “
Left Anterior Descending Artery Myocardial Bridging
,”
J. Am. Coll. Cardiol.
,
68
(
25
), pp.
2887
2899
.10.1016/j.jacc.2016.09.973
5.
Chatzizisis
,
Y. S.
, and
Giannoglou
,
G. D.
,
2009
, “
Myocardial Bridges Are Free From Atherosclerosis: Overview of the Underlying Mechanisms
,”
Can. J. Cardiol.
,
25
(
4
), pp.
219
222
.10.1016/S0828-282X(09)70065-0
6.
Ishikawa
,
Y.
,
Akasaka
,
Y.
,
Suzuki
,
K.
,
Fujiwara
,
M.
,
Ogawa
,
T.
,
Yamazaki
,
K.
,
Niino
,
H.
,
Tanaka
,
M.
,
Ogata
,
K.
,
Morinaga
,
S.
,
Ebihara
,
Y.
,
Kawahara
,
Y.
,
Sugiura
,
H.
,
Takimoto
,
T.
,
Komatsu
,
A.
,
Shinagawa
,
T.
,
Taki
,
K.
,
Satoh
,
H.
,
Yamada
,
K.
,
Yanagida-Iida
,
M.
,
Shimokawa
,
R.
,
Shimada
,
K.
,
Nishimura
,
C.
,
Ito
,
K.
, and
Ishii
,
T.
,
2009
, “
Anatomic Properties of Myocardial Bridge Predisposing to Myocardial Infarction
,”
Circulation
,
120
(
5
), pp.
376
383
.10.1161/CIRCULATIONAHA.108.820720
7.
Murtaza
,
G.
,
Mukherjee
,
D.
,
Gharacholou
,
S. M.
,
Nanjundappa
,
A.
,
Lavie
,
C. J.
,
Khan
,
A. A.
,
Shanmugasundaram
,
M.
, and
Paul
,
T. K.
,
2020
, “
An Updated Review on Myocardial Bridging
,”
Cardiovasc. Revascularization Med.
,
21
(
9
), pp.
1169
1179
(In Press).10.1016/j.carrev.2020.02.014
8.
MöHlenkamp
,
S.
,
Hort
,
W.
,
Ge
,
J.
, and., and
Erbel
,
R.
,
2002
, “
Update on Myocardial Bridging
,”
Circulation
,
106
(
20
), pp.
2616
2622
.10.1161/01.CIR.0000038420.14867.7A
9.
Kramer
,
J. R.
,
Kitazume
,
H.
,
Proudfit
,
W. L.
, and
Sones
,
F. M.
,
1982
, “
Clinical Significance of Isolated Coronary Bridges: Benign and Frequent Condition Involving the Left Anterior Descending Artery
,”
Am. Heart J.
,
103
(
2
), pp.
283
288
.10.1016/0002-8703(82)90500-2
10.
Ishikawa
,
Y.
,
Akasaka
,
Y.
,
Akishima-Fukasawa
,
Y.
,
Iuchi
,
A.
,
Suzuki
,
K.
,
Uno
,
M.
,
Abe
,
E.
,
Yang
,
Y.
,
Li
,
C.-P.
,
Mukai
,
K.
,
Niino
,
H.
,
Tanaka
,
M.
,
Kawahara
,
Y.
,
Sugiura
,
H.
,
Shinagawa
,
T.
,
Morinaga
,
S.
,
Ogata
,
K.
,
Onuma
,
J.
,
Yanagida-Iida
,
M.
,
Taki
,
K.
,
Komatsu
,
A.
,
Satoh
,
H.
,
Yamada
,
K.
,
Shimokawa
,
R.
,
Shibuya
,
K.
,
Takahashi
,
K.
, and
Ishii
,
T.
,
2013
, “
Histopathologic Profiles of Coronary Atherosclerosis by Myocardial Bridge Underlying Myocardial Infarction
,”
Atherosclerosis
,
226
(
1
), pp.
118
123
.10.1016/j.atherosclerosis.2012.10.037
11.
Marzilli
,
M.
,
Merz
,
C. N. B.
,
Boden
,
W. E.
,
Bonow
,
R. O.
,
Capozza
,
P. G.
,
Chilian
,
W. M.
,
DeMaria
,
A. N.
,
Guarini
,
G.
,
Huqi
,
A.
,
Morrone
,
D.
,
Patel
,
M. R.
, and
Weintraub
,
W. S.
,
2012
, “
Obstructive Coronary Atherosclerosis and Ischemic Heart Disease: An Elusive Link!
,”
J. Am. Coll. Cardiol.
,
60
(
11
), pp.
951
956
.10.1016/j.jacc.2012.02.082
12.
Alegria
,
J. R.
,
Herrmann
,
J.
,
Holmes
,
D. R.
, Jr
,
Lerman
,
A.
, and
Rihal
,
C. S.
,
2005
, “
Myocardial Bridging
,”
Eur. Heart J.
,
26
(
12
), pp.
1159
1168
.10.1093/eurheartj/ehi203
13.
Gaibazzi
,
N.
,
Rigo
,
F.
, and
Reverberi
,
C.
,
2011
, “
Severe Coronary Tortuosity or Myocardial Bridging in Patients With Chest Pain, Normal Coronary Arteries, and Reversible Myocardial Perfusion Defects
,”
Am. J. Cardiol
,
108
(
7
), pp.
973
978
.10.1016/j.amjcard.2011.05.030
14.
Choi Byoung
,
G.
,
Rha
,
S. W.
,
Yoon Seong
,
G.
,
Choi Cheol
,
U.
,
Lee Min
,
W.
, and
Kim Suhng
,
W.
,
2019
, “
Association of Major Adverse Cardiac Events Up to 5 Years in Patients With Chest Pain Without Significant Coronary Artery Disease in the Korean Population
,”
J. Am. Heart Assoc.
,
8
(
12
), p.
e010541
.10.1161/JAHA.118.010541
15.
Corban
,
M. T.
,
Hung
,
O. Y.
,
Eshtehardi
,
P.
,
Rasoul-Arzrumly
,
E.
,
McDaniel
,
M.
,
Mekonnen
,
G.
,
Timmins
,
L. H.
,
Lutz
,
J.
,
Guyton
,
R. A.
, and
Samady
,
H.
,
2014
, “
Myocardial Bridging: Contemporary Understanding of Pathophysiology With Implications for Diagnostic and Therapeutic Strategies
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
2346
2355
.10.1016/j.jacc.2014.01.049
16.
Sharzehee
,
M.
,
Chang
,
Y.
,
Song
,
J-P.
, and
Han
,
H.-C.
,
2019
, “
Hemodynamic Effects of Myocardial Bridging in Patients With Hypertrophic Cardiomyopathy
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
317
(
6
), pp.
H1282
H1291
.10.1152/ajpheart.00466.2019
17.
Al-Musawi
,
M.
,
Marsh
,
A.
,
Yi
,
S.
,
AlOmaishi
,
S.
, and
Rubay
,
D.
,
2019
, “
Combined Myocardial Bridge and Coronary Vessel Disease Requiring Coronary Artery Bypass Grafting and Myotomy of the Myocardial Bridge
,”
Cureus
,
11
(
12
), p.
e6486
.10.7759/cureus.6486
18.
Ishimori
,
T.
,
1980
, “
Myocardial Bridges: A New Horizon in the Evaluation of Ischemic Heart Disease
,”
Catheterization Cardiovasc. Diagn.
,
6
(
4
), pp.
355
357
.10.1002/ccd.1810060403
19.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.10.1016/j.jacc.2007.02.059
20.
Gijsen
,
F.
,
Katagiri
,
Y.
,
Barlis
,
P.
,
Bourantas
,
C.
,
Collet
,
C.
,
Coskun
,
U.
,
Daemen
,
J.
,
Dijkstra
,
J.
,
Edelman
,
E.
,
Evans
,
P.
,
van der Heiden
,
K.
,
Hose
,
R.
,
Koo
,
B.-K.
,
Krams
,
R.
,
Marsden
,
A.
,
Migliavacca
,
F.
,
Onuma
,
Y.
,
Ooi
,
A.
,
Poon
,
E.
,
Samady
,
H.
,
Stone
,
P.
,
Takahashi
,
K.
,
Tang
,
D.
,
Thondapu
,
V.
,
Tenekecioglu
,
E.
,
Timmins
,
L.
,
Torii
,
R.
,
Wentzel
,
J.
, and
Serruys
,
P.
,
2019
, “
Expert Recommendations on the Assessment of Wall Shear Stress in Human Coronary Arteries: Existing Methodologies, Technical Considerations, and Clinical Applications
,”
Eur. Heart J.
,
40
(
41
), pp.
3421
3433
.10.1093/eurheartj/ehz551
21.
Gijsen
,
F.
,
van der Giessen
,
A.
,
van der Steen
,
A.
, and
Wentzel
,
J.
,
2013
, “
Shear Stress and Advanced Atherosclerosis in Human Coronary Arteries
,”
J. Biomech.
,
46
(
2
), pp.
240
247
.10.1016/j.jbiomech.2012.11.006
22.
Arzani
,
A.
,
2019
, “
Coronary Artery Plaque Growth: A Two-Way Coupled Shear Stress–Driven Model
,”
Int. J. Numer. Methods Biomed. Eng.
, 36(1), p.
e3293
.10.1002/cnm.3293
23.
Mates
,
R. E.
,
Gupta
,
R. L.
,
Bell
,
A. C.
, and
Klocke
,
F. J.
,
1978
, “
Fluid Dynamics of Coronary Artery Stenosis
,”
Circ. Res.
,
42
(
1
), pp.
152
162
.10.1161/01.RES.42.1.152
24.
Epstein
,
S. E.
,
Cannon
,
R. O.
, and
Talbot
,
T. L.
,
1985
, “
Hemodynamic Principles in the Control of Coronary Blood Flow
,”
Am. J. Cardiol.
,
56
(
9
), pp.
E4
E10
.10.1016/0002-9149(85)91169-5
25.
Sharzehee
,
M.
,
Khalafvand
,
S. S.
, and
Han
,
H.-C.
,
2018
, “
Fluid-Structure Interaction Modeling of Aneurysmal Arteries Under Steady-State and Pulsatile Blood Flow: A Stability Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
3
), pp.
219
231
.10.1080/10255842.2018.1439478
26.
Azar
,
D.
,
Torres
,
W.
,
Davis
,
L. A.
,
Shaw
,
T.
,
Eberth
,
J. F.
,
Kolachalama
,
V.
,
Lessner
,
S. M.
, and
Shazly
,
T.
,
2019
, “
Geometric Determinants of Local Hemodynamics in Severe Carotid Artery Stenosis
,”
Comput. Biol. Med.
,
114
, p.
103436
.10.1016/j.compbiomed.2019.103436
27.
Jahromi
,
R.
,
Pakravan
,
H. A.
,
Saidi
,
M. S.
, and
Firoozabadi
,
B.
,
2019
, “
Primary Stenosis Progression Versus Secondary Stenosis Formation in the Left Coronary Bifurcation: A Mechanical Point of View
,”
Biocybern. Biomed. Eng.
,
39
(
1
), pp.
188
198
.10.1016/j.bbe.2018.11.006
28.
Shahidian
,
A.
, and
Hassankiadeh
,
A. G.
,
2017
, “
Stress Analysis of Internal Carotid Artery With Low Stenosis Level: The Effect of Material Model and Plaque Geometry
,”
J. Mech. Med. Biol.
,
17
(
06
), p.
1750098
.10.1142/S0219519417500981
29.
Ding
,
H.
,
Shang
,
K.
,
Chen
,
Z.
,
Shen
,
L.
,
Xu
,
M.
,
Zhou
,
Y.
,
Zhao
,
L.
,
Xu
,
S.
, and
Zeng
,
Y.
,
2010
, “
A Haemodynamic Model for Heart–Mural Coronary Artery–Myocardial Bridge
,”
J. Med. Eng. Technol.
,
34
(
1
), pp.
29
34
.10.3109/03091900903271638
30.
Ding
,
H.
,
Yang
,
Q.
,
Shang
,
K.
,
Lan
,
H.
,
Lv
,
J.
,
Liu
,
Z.
,
Liu
,
Y.
,
Sheng
,
L.
, and
Zeng
,
Y.
,
2017
, “
Estimation of Shear Stress by Using a Myocardial Bridge-Mural Coronary Artery Simulating Device
,”
Cardiol. J.
,
24
(
5
), pp.
530
538
.10.5603/CJ.a2016.0084
31.
Brunette
,
J.
,
Mongrain
,
R.
,
Laurier
,
J.
,
Galaz
,
R.
, and
Tardif
,
J. C.
,
2008
, “
3D Flow Study in a Mildly Stenotic Coronary Artery Phantom Using a Whole Volume PIV Method
,”
Med. Eng. Phys.
,
30
(
9
), pp.
1193
1200
.10.1016/j.medengphy.2008.02.012
32.
Doutel
,
E.
,
Carneiro
,
J.
,
Campos
,
J. B. L. M.
, and
Miranda
,
J. M.
,
2018
, “
Experimental and Numerical Methodology to Analyze Flows in a Coronary Bifurcation
,”
Eur. J. Mech. B/Fluids
,
67
, pp.
341
356
.10.1016/j.euromechflu.2017.09.009
33.
Banerjee
,
R. K.
,
Ashtekar
,
K. D.
,
Helmy
,
T. A.
,
Effat
,
M. A.
,
Back
,
L. H.
, and
Khoury
,
S. F.
,
2008
, “
Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study
,”
Biomed. Eng. Online
,
7
(
1
), p.
24
10.1186/1475-925X-7-24
34.
Samaee
,
M.
,
Tafazzoli-Shadpour
,
M.
, and
Alavi
,
H.
,
2017
, “
Coupling of Shear–Circumferential Stress Pulses Investigation Through Stress Phase Angle in FSI Models of Stenotic Artery Using Experimental Data
,”
Med. Biol. Eng. Comput.
,
55
(
8
), pp.
1147
1162
.10.1007/s11517-016-1564-z
35.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
36.
Ku
,
J. P.
,
Elkins
,
C. J.
, and
Taylor
,
C. A.
,
2005
, “
Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
257
269
.10.1007/s10439-005-1729-7
37.
Gijsen
,
F. J. H.
,
Wentzel
,
J. J.
,
Thury
,
A.
,
Mastik
,
F.
,
Schaar
,
J. A.
,
Schuurbiers
,
J. C. H.
,
Slager
,
C. J.
,
van der Giessen
,
W. J.
,
de Feyter
,
P. J.
,
van der Steen
,
A. F. W.
, and
Serruys
,
P. W.
,
2008
, “
Strain Distribution Over Plaques in Human Coronary Arteries Relates to Shear Stress
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
295
(
4
), pp.
H1608
H1614
.10.1152/ajpheart.01081.2007
38.
Mohammadi
,
H.
, and
Bahramian
,
F.
,
2009
, “
Boundary Conditions in Simulation of Stenosed Coronary Arteries
,”
Cardiovasc. Eng.
,
9
(
3
), pp.
83
91
.10.1007/s10558-009-9078-z
39.
Arzani
,
A.
,
2018
, “
Accounting for Residence-Time in Blood Rheology Models: Do we Really Need non-Newtonian Blood Flow Modelling in Large Arteries?
,”
J. R. Soc. Interface
,
15
(
146
), p.
20180486
.10.1098/rsif.2018.0486
40.
Eslami
,
P.
,
Tran
,
J.
,
Jin
,
Z.
,
Karady
,
J.
,
Sotoodeh
,
R.
,
Lu
,
M. T.
,
Hoffmann
,
U.
, and
Marsden
,
A.
,
2020
, “
Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
024503
.10.1115/1.4043722
41.
Javadzadegan
,
A.
,
Moshfegh
,
A.
,
Fulker
,
D.
,
Barber
,
T.
,
Qian
,
Y.
,
Kritharides
,
L.
, and
Yong
,
A. S. C.
,
2018
, “
Development of a Computational Fluid Dynamics Model for Myocardial Bridging
,”
ASME J. Biomech. Eng.
,
140
(
9
), p.
091010
.10.1115/1.4040127
42.
Theodorakakos
,
A.
,
Gavaises
,
M.
,
Andriotis
,
A.
,
Zifan
,
A.
,
Liatsis
,
P.
,
Pantos
,
I.
,
Efstathopoulos
,
E. P.
, and
Katritsis
,
D.
,
2008
, “
Simulation of Cardiac Motion on non-Newtonian, Pulsating Flow Development in the Human Left Anterior Descending Coronary Artery
,”
Phys. Med. Biol.
,
53
(
18
), pp.
4875
4892
.10.1088/0031-9155/53/18/002
43.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
,
2010
, “
In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-Resolved Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
889
902
.10.1007/s10439-010-9915-7
44.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D'Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
,
2005
, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
,
38
(
7
), pp.
1375
1386
.10.1016/j.jbiomech.2004.06.028
45.
Lee
,
S.-W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.10.1115/1.3127252
46.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
47.
Hoi
,
Y.
,
Zhou
,
Y.-Q.
,
Zhang
,
X.
,
Henkelman
,
R. M.
, and
Steinman
,
D. A.
,
2011
, “
Correlation Between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1414
1422
.10.1007/s10439-011-0255-z
48.
Kolli
,
K. K.
,
van de Hoef
,
T. P.
,
Effat
,
M. A.
,
Banerjee
,
R. K.
,
Peelukhana
,
S. V.
,
Succop
,
P.
,
Leesar
,
M. A.
,
Imran
,
A.
,
Piek
,
J. J.
, and
Helmy
,
T. A.
,
2016
, “
Diagnostic Cutoff for Pressure Drop Coefficient in Relation to Fractional Flow Reserve and Coronary Flow Reserve: A Patient‐Level Analysis
,”
Catheterization Cardiovasc. Interventions
,
87
(
2
), pp.
273
282
.10.1002/ccd.26063
49.
Kolli
,
K. K.
,
Helmy
,
T. A.
,
Peelukhana
,
S. V.
,
Arif
,
I.
,
Leesar
,
M. A.
,
Back
,
L. H.
,
Banerjee
,
R. K.
, and
Effat
,
M. A.
,
2014
, “
Functional Diagnosis of Coronary Stenoses Using Pressure Drop Coefficient: A Pilot Study in Humans
,”
Catheterization Cardiovasc. Interventions
,
83
(
3
), pp.
377
385
.10.1002/ccd.25085
50.
Nosovitsky
,
V. A.
,
Ilegbusi
,
O. J.
,
Jiang
,
J.
,
Stone
,
P. H.
, and
Feldman
,
C. L.
,
1997
, “
Effects of Curvature and Stenosis-Like Narrowing on Wall Shear Stress in a Coronary Artery Model With Phasic Flow
,”
Comput. Biomed. Res.
,
30
(
1
), pp.
61
82
.10.1006/cbmr.1997.1434
51.
Logan
,
S. E.
,
1975
, “
On the Fluid Mechanics of Human Coronary Artery Stenosis
,”
IEEE Trans. Biomed. Eng.
,
BME-22
(
4
), pp.
327
334
.10.1109/TBME.1975.324453
52.
Tang
,
T. D.
,
1990
, “Periodic Flow in a Bifurcating Tube at Moderate Reynolds Number,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
53.
Members
,
A. T. F.
,
Silber
,
S.
,
Albertsson
,
P.
,
Avilés
,
F. F.
,
Camici
,
P. G.
,
Colombo
,
A.
,
Hamm
,
C.
,
Jørgensen
,
E.
,
Marco
,
J.
,
Nordrehaug
,
J.-E.
,
Ruzyllo
,
W.
,
Urban
,
P.
,
Stone
,
G. W.
, and., and
Wijns
,
W.
,
2005
, “
Guidelines for Percutaneous Coronary Interventions: The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology
,”
Eur. Heart J.
,
26
(
8
), pp.
804
847
.10.1093/eurheartj/ehi138
54.
Kern
,
M. J.
,
Lerman
,
A.
,
Bech
,
J.-W.
,
De Bruyne
,
B.
,
Eeckhout
,
E.
,
Fearon
,
W. F.
,
Higano
,
S. T.
,
Lim
,
M. J.
,
Meuwissen
,
M.
,
Piek
,
J. J.
,
Pijls
,
N. H. J.
,
Siebes
,
M.
, and
Spaan
,
J. A. E.
,
2006
, “
Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory: A Scientific Statement From the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology
,”
Circulation
,
114
(
12
), pp.
1321
1341
.10.1161/CIRCULATIONAHA.106.177276
55.
Schrauwen
,
J. T. C.
,
Wentzel
,
J. J.
,
van der Steen
,
A. F. W.
, and
Gijsen
,
F. J. H.
,
2014
, “
Geometry-Based Pressure Drop Prediction in Mildly Diseased Human Coronary Arteries
,”
J. Biomech.
,
47
(
8
), pp.
1810
1815
.10.1016/j.jbiomech.2014.03.028
56.
Liao
,
R.
,
Luc
,
D.
,
Sun
,
Y.
, and
Kirchberg
,
K.
,
2010
, “
3-D Reconstruction of the Coronary Artery Tree From Multiple Views of a Rotational X-Ray Angiography
,”
Int. J. Cardiovasc. Imag.
,
26
(
7
), pp.
733
749
.10.1007/s10554-009-9528-0
57.
Wellnhofer
,
E.
,
Goubergrits
,
L.
,
Kertzscher
,
U.
, and
Affeld
,
K.
,
2006
, “
In-Vivo Coronary Flow Profiling Based on Biplane Angiograms: Influence of Geometric Simplifications on the Three-Dimensional Reconstruction and Wall Shear Stress Calculation
,”
BioMed. Eng. OnLine
,
5
(
1
), p.
39
.10.1186/1475-925X-5-39
58.
Wellnhofer
,
E.
,
Osman
,
J.
,
Kertzscher
,
U.
,
Affeld
,
K.
,
Fleck
,
E.
, and
Goubergrits
,
L.
,
2010
, “
Flow Simulation Studies in Coronary Arteries—Impact of Side-Branches
,”
Atherosclerosis
,
213
(
2
), pp.
475
481
.10.1016/j.atherosclerosis.2010.09.007
59.
Akbarzadeh
,
A. M.
, and
Borazjani
,
I.
,
2019
, “
Large Eddy Simulations of a Turbulent Channel Flow With a Deforming Wall Undergoing High Steepness Traveling Waves
,”
Phys. Fluids
,
31
(
12
), p.
125107
.10.1063/1.5131268
60.
Nikolić
,
D.
,
Radović
,
M.
,
Aleksandrić
,
S.
,
Tomašević
,
M.
, and
Filipović
,
N.
,
2014
, “
Prediction of Coronary Plaque Location on Arteries Having Myocardial Bridge, Using Finite Element Models
,”
Comput. Methods Prog. Biomed.
,
117
(
2
), pp.
137
144
.10.1016/j.cmpb.2014.07.012
61.
Coppel
,
R.
,
Lagache
,
M.
,
Finet
,
G.
,
Rioufol
,
G.
,
Gómez
,
A.
,
Dérimay
,
F.
,
Malvé
,
M.
,
Yazdani
,
S. K.
,
Pettigrew
,
R. I.
, and
Ohayon
,
J.
,
2019
, “
Influence of Collaterals on True FFR Prediction for a Left Main Stenosis With Concomitant Lesions: An In Vitro Study
,”
Ann. Biomed. Eng.
,
47
(
6
), pp.
1409
1421
.10.1007/s10439-019-02235-y
62.
Yamamoto
,
E.
,
Saito
,
N.
,
Matsuo
,
H.
,
Kawase
,
Y.
,
Watanabe
,
S.
,
Bao
,
B.
,
Watanabe
,
H.
,
Higami
,
H.
,
Nakatsuma
,
K.
, and
Kimura
,
T.
,
2016
, “
Prediction of the True Fractional Flow Reserve of Left Main Coronary Artery Stenosis With Concomitant Downstream Stenoses: In Vitro and In Vivo Experiments
,”
EuroIntervention
,
11
(
11
), pp.
e1249
e1256
.10.4244/EIJV11I11A246
You do not currently have access to this content.