Abstract

To precisely control protein activity in a living system is a challenging yet long-pursued objective in biomedical sciences. Recently, we have developed a new approach named molecular hyperthermia (MH) to photoinactivate protein activity of interest without genetic modification. MH utilizes nanosecond laser pulse to create nanoscale heating around plasmonic nanoparticles to inactivate adjacent protein in live cells. Here we use a numerical model to study important parameters and conditions for MH to efficiently inactivate proteins in nanoscale. To quantify the protein inactivation process, the impact zone is defined as the range where proteins are inactivated by the nanoparticle localized heating. Factors that reduce the MH impact zone include the laser pulse duration, temperature-dependent thermal conductivity (versus constant properties), and nonspherical nanoparticle geometry. In contrast, the impact zone is insensitive to temperature-dependent material density and specific heat, as well as thermal interface resistance based on reported data in the literature. The low thermal conductivity of cytoplasm increases the impact zone. Different proteins with various Arrhenius kinetic parameters have significantly different impact zones. This study provides guidelines to design the protein inactivation process by MH.

References

1.
Hoorens
,
M. W. H.
, and
Szymanski
,
W.
,
2018
, “
Reversible, Spatial and Temporal Control Over Protein Activity Using Light
,”
Trends Biochem. Sci.
,
43
(
8
), pp.
567
575
.10.1016/j.tibs.2018.05.004
2.
Kim
,
C. K.
,
Adhikari
,
A.
, and
Deisseroth
,
K.
,
2017
, “
Integration of Optogenetics With Complementary Methodologies in Systems Neuroscience
,”
Nat. Rev. Neurosci.
,
18
(
4
), pp.
222
235
.10.1038/nrn.2017.15
3.
Gomez-Santacana
,
X.
,
de Munnik
,
S. M.
,
Vijayachandran
,
P.
,
Da Costa Pereira
,
D.
,
Bebelman
,
J. P. M.
,
de Esch
,
I. J. P.
,
Vischer
,
H. F.
,
Wijtmans
,
M.
, and
Leurs
,
R.
,
2018
, “
Photoswitching the Efficacy of a Small-Molecule Ligand for a Peptidergic GPCR: From Antagonism to Agonism
,”
Angew. Chem., Int. Ed. Engl.
,
57
(
36
), pp.
11608
11612
.10.1002/anie.201804875
4.
Fehrentz
,
T.
,
Huber
,
F. M. E.
,
Hartrampf
,
N.
,
Bruegmann
,
T.
,
Frank
,
J. A.
,
Fine
,
N. H. F.
,
Malan
,
D.
,
Danzl
,
J. G.
,
Tikhonov
,
D. B.
,
Sumser
,
M.
,
Sasse
,
P.
,
Hodson
,
D. J.
,
Zhorov
,
B. S.
,
Klocker
,
N.
, and
Trauner
,
D.
,
2018
, “
Optical Control of L-Type Ca2+ Channels Using a Diltiazem Photoswitch
,”
Nat. Chem. Biol.
,
14
(
8
), pp.
764
767
.10.1038/s41589-018-0090-8
5.
Goodman
,
A. M.
,
Hogan
,
N. J.
,
Gottheim
,
S.
,
Li
,
C.
,
Clare
,
S. E.
, and
Halas
,
N. J.
,
2017
, “
Understanding Resonant Light-Triggered DNA Release From Plasmonic Nanoparticles
,”
ACS Nano
,
11
(
1
), pp.
171
179
.10.1021/acsnano.6b06510
6.
Chen
,
S.
,
Weitemier
,
A. Z.
,
Zeng
,
X.
,
He
,
L.
,
Wang
,
X.
,
Tao
,
Y.
,
Huang
,
A. J. Y.
,
Hashimotodani
,
Y.
,
Kano
,
M.
,
Iwasaki
,
H.
,
Parajuli
,
L. K.
,
Okabe
,
S.
,
Teh
,
D. B. L.
,
All
,
A. H.
,
Tsutsui-Kimura
,
I.
,
Tanaka
,
K. F.
,
Liu
,
X.
, and
McHugh
,
T. J.
,
2018
, “
Near-Infrared Deep Brain Stimulation Via Upconversion Nanoparticle-Mediated Optogenetics
,”
Science
,
359
(
6376
), pp.
679
684
.10.1126/science.aaq1144
7.
Huang
,
H.
,
Delikanli
,
S.
,
Zeng
,
H.
,
Ferkey
,
D. M.
, and
Pralle
,
A.
,
2010
, “
Remote Control of Ion Channels and Neurons Through Magnetic-Field Heating of Nanoparticles
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
602
606
.10.1038/nnano.2010.125
8.
Ma
,
X.
,
Xiong
,
Y.
, and
Lee
,
L. T.
, O.,
2018
, “
Application of Nanoparticles for Targeting G Protein-Coupled Receptors
,”
Int. J. Mol. Sci.
,
19
(
7
), p.
2006
.10.3390/ijms19072006
9.
Hartland
,
G. V.
,
2011
, “
Optical Studies of Dynamics in Noble Metal Nanostructures
,”
Chem. Rev.
,
111
(
6
), pp.
3858
3887
.10.1021/cr1002547
10.
Huang
,
X.
,
Jain
,
P. K.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2008
, “
Plasmonic Photothermal Therapy (Pptt) Using Gold Nanoparticles
,”
Lasers Med. Sci.
,
23
(
3
), pp.
217
228
.10.1007/s10103-007-0470-x
11.
Paviolo
,
C.
, and
Stoddart
,
P. R.
,
2017
, “
Gold Nanoparticles for Modulating Neuronal Behavior
,”
Nanomaterials (Basel)
,
7
(
4
), p.
92
.10.3390/nano7040092
12.
Lavoie-Cardinal
,
F.
,
Salesse
,
C.
,
Bergeron
,
E.
,
Meunier
,
M.
, and
De Koninck
,
P.
,
2016
, “
Gold Nanoparticle-Assisted All Optical Localized Stimulation and Monitoring of Ca2+ Signaling in Neurons
,”
Sci. Rep.
,
6
, p.
20619
.10.1038/srep20619
13.
Carvalho-de-Souza
,
J. L.
,
Treger
,
J. S.
,
Dang
,
B.
,
Kent
,
S. B.
,
Pepperberg
,
D. R.
, and
Bezanilla
,
F.
,
2015
, “
Photosensitivity of Neurons Enabled by Cell-Targeted Gold Nanoparticles
,”
Neuron
,
86
(
1
), pp.
207
217
.10.1016/j.neuron.2015.02.033
14.
Robert
,
H. M. L.
,
Savatier
,
J.
,
Vial
,
S.
,
Verghese
,
J.
,
Wattellier
,
B.
,
Rigneault
,
H.
,
Monneret
,
S.
,
Polleux
,
J.
, and
Baffou
,
G.
,
2018
, “
Photothermal Control of Heat-Shock Protein Expression at the Single Cell Level
,”
Small
,
14
(
32
), p.
1801910
.10.1002/smll.201801910
15.
Wilson
,
A. M.
,
Mazzaferri
,
J.
,
Bergeron
,
E.
,
Patskovsky
,
S.
,
Marcoux-Valiquette
,
P.
,
Costantino
,
S.
,
Sapieha
,
P.
, and
Meunier
,
M.
,
2018
, “
In Vivo Laser-Mediated Retinal Ganglion Cell Optoporation Using Kv1.1 Conjugated Gold Nanoparticles
,”
Nano Lett.
,
18
(
11
), pp.
6981
6988
.10.1021/acs.nanolett.8b02896
16.
Li
,
X.
,
Kang
,
P.
,
Chen
,
Z.
,
Lal
,
S.
,
Zhang
,
L.
,
Gassensmith
,
J. J.
, and
Qin
,
Z.
,
2018
, “
Rock the Nucleus: Significantly Enhanced Nuclear Membrane Permeability and Gene Transfection by Plasmonic Nanobubble Induced Nanomechanical Transduction
,”
Chem. Commun. (Cambridge, U. K.)
,
54
(
20
), pp.
2479
2482
.10.1039/C7CC09613E
17.
Baffou
,
G.
, and
Quidant
,
R.
,
2013
, “
Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat
,”
Laser Photon. Rev.
,
7
(
2
), pp.
171
187
.10.1002/lpor.201200003
18.
Qin
,
Z.
, and
Bischof
,
J. C.
,
2012
, “
Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating
,”
Chem. Soc. Rev.
,
41
(
3
), pp.
1191
1217
.10.1039/C1CS15184C
19.
Huttmann
,
G.
, and
Birngruber
,
R.
,
1999
, “
On the Possibility of High-Precision Photothermal Microeffects and the Measurement of Fast Thermal Denaturation of Proteins
,”
IEEE J. Sel. Top. Quant.
,
5
(
4
), pp.
954
962
.10.1109/2944.796317
20.
Hu
,
M.
, and
Hartland
,
G. V.
,
2002
, “
Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time Versus Size
,”
J. Phys. Chem. B
,
106
(
28
), pp.
7029
7033
.10.1021/jp020581+
21.
Keblinski
,
P.
,
Cahill
,
D. G.
,
Bodapati
,
A.
,
Sullivan
,
C. R.
, and
Taton
,
T. A.
,
2006
, “
Limits of Localized Heating by Electromagnetically Excited Nanoparticles
,”
J. Appl. Phys.
,
100
(
5
), p.
054305
.10.1063/1.2335783
22.
Baffou
,
G.
,
Quidant
,
R.
, and
Girard
,
C.
,
2010
, “
Thermoplasmonics Modeling: A Green's Function Approach
,”
Phys. Rev. B
,
82
(
16
), p.
165424
.10.1103/PhysRevB.82.165424
23.
Richardson
,
H. H.
,
Carlson
,
M. T.
,
Tandler
,
P. J.
,
Hernandez
,
P.
, and
Govorov
,
A. O.
,
2009
, “
Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions
,”
Nano Lett.
,
9
(
3
), pp.
1139
1146
.10.1021/nl8036905
24.
Baffou
,
G.
,
Berto
,
P.
,
Bermúdez Ureña
,
E.
,
Quidant
,
R.
,
Monneret
,
S.
,
Polleux
,
J.
, and
Rigneault
,
H.
,
2013
, “
Photoinduced Heating of Nanoparticle Arrays
,”
ACS Nano
,
7
(
8
), pp.
6478
6488
.10.1021/nn401924n
25.
Yakunin
,
A. N.
,
Avetisyan
,
Y. A.
, and
Tuchin
,
V. V.
,
2015
, “
Quantification of Laser Local Hyperthermia Induced by Gold Plasmonic Nanoparticles
,”
J. Biomed. Opt.
,
20
(
5
), p.
051030
.10.1117/1.JBO.20.5.051030
26.
Huttmann
,
G.
,
Radt
,
B.
,
Serbin
,
J.
, and
Birngruber
,
R.
,
2003
, “
Inactivation of Proteins by Irradiation of Gold Nanoparticles With Nano- and Picosecond Laser Pulses
,”
Proc. SPIE
,
5142
, pp.
88
95
.10.1117/12.500525
27.
Pitsillides
,
C. M.
,
Joe
,
E. K.
,
Wei
,
X.
,
Anderson
,
R. R.
, and
Lin
,
C. P.
,
2003
, “
Selective Cell Targeting With Light-Absorbing Microparticles and Nanoparticles
,”
Biophys. J.
,
84
(
6
), pp.
4023
4032
.10.1016/S0006-3495(03)75128-5
28.
Takeda
,
Y.
,
Kondow
,
T.
, and
Mafune
,
F.
,
2006
, “
Degradation of Protein in Nanoplasma Generated Around Gold Nanoparticles in Solution by Laser Irradiation
,”
J. Phys. Chem. B
,
110
(
5
), pp.
2393
2397
.10.1021/jp058204v
29.
Kang
,
P.
,
Chen
,
Z.
,
Nielsen
,
S. O.
,
Hoyt
,
K.
,
D'Arcy
,
S.
,
Gassensmith
,
J. J.
, and
Qin
,
Z.
,
2017
, “
Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating
,”
Small
,
13
(
36
), pp.
1700841
1700847
.10.1002/smll.201700841
30.
Kang
,
P.
,
Li
,
X.
,
Liu
,
Y.
,
Shiers
,
S. I.
,
Xiong
,
H.
,
Giannotta
,
M.
,
Dejana
,
E.
,
Price
,
T. J.
,
Randrianalisoa
,
J.
,
Nielsen
,
S. O.
, and
Qin
,
Z.
,
2019
, “
Transient Photoinactivation of Cell Membrane Protein Activity Without Genetic Modification by Molecular Hyperthermia
,”
ACS Nano
,
13
(
11
), pp.
12487
12499
.10.1021/acsnano.9b01993
31.
Sarkar
,
D.
,
Kang
,
P.
,
Nielsen
,
S. O.
, and
Qin
,
Z.
,
2019
, “
Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation Over a Large Temperature Range
,”
ACS Nano
,
13
(
8
), pp.
8669
8679
.10.1021/acsnano.9b00068
32.
Dagallier
,
A.
,
Boulais
,
E.
,
Boutopoulos
,
C.
,
Lachaine
,
R.
, and
Meunier
,
M.
,
2017
, “
Multiscale Modeling of Plasmonic Enhanced Energy Transfer and Cavitation Around Laser-Excited Nanoparticles
,”
Nanoscale
,
9
(
9
), pp.
3023
3032
.10.1039/C6NR08773F
33.
Berto
,
P.
,
Mohamed
,
M. S. A.
,
Rigneault
,
H.
, and
Baffou
,
G.
,
2014
, “
Time-Harmonic Optical Heating of Plasmonic Nanoparticles
,”
Phys. Rev. B
,
90
(
3
), p.
035439
.10.1103/PhysRevB.90.035439
34.
Chen
,
J. K.
,
Beraun
,
J. E.
, and
Tham
,
C. L.
,
2003
, “
Investigation of Thermal Response Caused by Pulse Laser Heating
,”
Numer. Heat Transfer, Part A
,
44
(
7
), pp.
705
722
.10.1080/716100520
35.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
36.
Goldenberg
,
H.
, and
Tranter
,
C. J.
,
1952
, “
Heat Flow in an Infinite Medium Heated by a Sphere
,”
Br. J. Appl. Phys.
,
3
(
9
), pp.
296
298
.10.1088/0508-3443/3/9/307
37.
Waxenegger
,
J.
,
Trügler
,
A.
, and
Hohenester
,
U.
,
2015
, “
Plasmonics Simulations With the Mnpbem Toolbox: Consideration of Substrates and Layer Structures
,”
Comput. Phys. Comm.
,
193
, pp.
138
150
.10.1016/j.cpc.2015.03.023
38.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
.10.1103/PhysRevB.6.4370
39.
Pohl
,
F. M.
,
1976
, “
Temperature-Dependence of the Kinetics of Folding of Chymotrypsinogen A
,”
FEBS Lett.
,
65
(
3
), pp.
293
296
.10.1016/0014-5793(76)80132-9
40.
Yan
,
C.
,
Pattani
,
V.
,
Tunnell
,
J. W.
, and
Ren
,
P.
,
2010
, “
Temperature-Induced Unfolding of Epidermal Growth Factor (Egf): Insight From Molecular Dynamics Simulation
,”
J. Mol. Graph. Modell.
,
29
(
1
), pp.
2
12
.10.1016/j.jmgm.2010.03.011
41.
Eyring
,
H.
, and
Stearn
,
A. E.
,
1939
, “
The Application of the Theory of Absolute Reacton Rates to Proteins
,”
Chem. Rev.
,
24
(
2
), pp.
253
270
.10.1021/cr60078a005
42.
Hubbard
,
R.
,
1958
, “
The Thermal Stability of Rhodopsin and Opsin
,”
J. General Physiol.
,
42
(
2
), pp.
259
280
.10.1085/jgp.42.2.259
43.
Yoshioka
,
S.
, and
Stella
,
V. J.
,
2002
, “
Stability of Peptide and Protein Pharmaceuticals
,”
Stability of Drugs and Dosage Forms
,
Springer US
,
Boston, MA
, pp.
187
203
.
44.
Nasser Brumano
,
M. H.
,
Rogana
,
E.
, and
Swaisgood
,
H. E.
,
2000
, “
Thermodynamics of Unfolding of Β-Trypsin at Ph 2.8
,”
Arch. Biochem. Biophys.
,
382
(
1
), pp.
57
62
.10.1006/abbi.2000.1983
45.
Pina
,
D. G.
,
Shnyrova
,
A. V.
,
Gavilanes
,
F.
,
Rodríguez
,
A.
,
Leal
,
F.
,
Roig
,
M. G.
,
Sakharov
,
I. Y.
,
Zhadan
,
G. G.
,
Villar
,
E.
, and
Shnyrov
,
V. L.
,
2001
, “
Thermally Induced Conformational Changes in Horseradish Peroxidase
,”
Eur. J. Biochem.
,
268
(
1
), pp.
120
126
.10.1046/j.1432-1033.2001.01855.x
46.
Steel
,
B. C.
,
McKenzie
,
D. R.
,
Bilek
,
M. M.
,
Nosworthy
,
N. J.
, and
dos Remedios
,
C. G.
,
2006
, “
Nanosecond Responses of Proteins to Ultra-High Temperature Pulses
,”
Biophys. J.
,
91
(
6
), pp.
L66
L68
.10.1529/biophysj.106.090944
47.
Yang
,
Z.
,
Zhou
,
Q.
,
Mok
,
L.
,
Singh
,
A.
,
Swartz
,
D. J.
,
Urbatsch
,
I. L.
, and
Brouillette
,
C. G.
,
2017
, “
Interactions and Cooperativity Between P-Glycoprotein Structural Domains Determined by Thermal Unfolding Provides Insights Into Its Solution Structure and Function
,”
Biochim. Biophys. Acta (BBA) - Biomembr.
,
1859
(
1
), pp.
48
60
.10.1016/j.bbamem.2016.10.009
48.
COMSOL,
2017
, “
Comsol Multiphysics® Reference Manual, Version 5.3
,”
COMSOL
,
Burlington, MA
, accessed Nov. 13, 2020, www.comsol.com
49.
Pustovalov
,
V. K.
,
Smetannikov
,
A. S.
, and
Zharov
,
V. P.
,
2008
, “
Photothermal and Accompanied Phenomena of Selective Nanophotothermolysis With Gold Nanoparticles and Laser Pulses
,”
Laser Phys. Lett.
,
5
(
11
), pp.
775
792
.10.1002/lapl.200810072
50.
Tournus
,
F.
,
2011
, “
Random Nanoparticle Deposition: Inter-Particle Distances in 2d, 3d, and Multilayer Samples
,”
J. Nanopart. Res.
,
13
(
10
), pp.
5211
5223
.10.1007/s11051-011-0506-9
51.
Terentyuk
,
G.
,
Maslyakova
,
G.
,
Suleymanova
,
L.
,
Khlebtsov
,
N.
,
Khlebtsov
,
B.
,
Akchurin
,
G.
,
Maksimova
,
I.
, and
Tuchin
,
V.
,
2009
, “
Laser-Induced Tissue Hyperthermia Mediated by Gold Nanoparticles: Toward Cancer Phototherapy
,”
J. Biomed. Opt.
,
14
(
2
), p.
021016
.10.1117/1.3122371
52.
Park
,
B. K.
,
Yi
,
N.
,
Park
,
J.
, and
Kim
,
D.
,
2013
, “
Thermal Conductivity of Single Biological Cells and Relation With Cell Viability
,”
Appl. Phys. Lett.
,
102
(
20
), p.
203702
.10.1063/1.4807471
53.
Park
,
B. K.
,
Yi
,
N.
,
Park
,
J.
,
Choi
,
T. Y.
,
Lee
,
J. Y.
,
Busnaina
,
A.
, and
Kim
,
D.
,
2011
, “
Thermal Conductivity of Bovine Serum Albumin: A Tool to Probe Denaturation of Protein
,”
Appl. Phys. Lett.
,
99
(
16
), p.
163702
.10.1063/1.3652704
54.
Zeskind
,
B. J.
,
Jordan
,
C. D.
,
Timp
,
W.
,
Trapani
,
L.
,
Waller
,
G.
,
Horodincu
,
V.
,
Ehrlich
,
D. J.
, and
Matsudaira
,
P.
,
2007
, “
Nucleic Acid and Protein Mass Mapping by Live-Cell Deep-Ultraviolet Microscopy
,”
Nat. Methods
,
4
(
7
), pp.
567
569
.10.1038/nmeth1053
55.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2002
, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
66
(
22
), p.
224301
.10.1103/PhysRevB.66.224301
56.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2004
, “
Aupd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
,
108
(
49
), pp.
18870
18875
.10.1021/jp048375k
57.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.10.1103/PhysRevLett.96.186101
58.
Plech
,
A.
,
Kotaidis
,
V.
,
Gresillon
,
S.
,
Dahmen
,
C.
, and
von Plessen
,
G.
,
2004
, “
Laser-Induced Heating and Melting of Gold Nanoparticles Studied by Time-Resolved X-Ray Scattering
,”
Phys. Rev. B
,
70
(
19
), p.
195423
.10.1103/PhysRevB.70.195423
59.
Schmidt
,
A. J.
,
Alper
,
J. D.
,
Chiesa
,
M.
,
Chen
,
G.
,
Das
,
S. K.
, and
Hamad-Schifferli
,
K.
,
2008
, “
Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay
,”
J. Phys. Chem. C
,
112
(
35
), pp.
13320
13323
.10.1021/jp8051888
60.
Merabia
,
S.
,
Shenogin
,
S.
,
Joly
,
L.
,
Keblinski
,
P.
, and
Barrat
,
J. L.
,
2009
, “
Heat Transfer From Nanoparticles: A Corresponding State Analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
36
), pp.
15113
15118
.10.1073/pnas.0901372106
61.
Losego
,
M. D.
,
Grady
,
M. E.
,
Sottos
,
N. R.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2012
, “
Effects of Chemical Bonding on Heat Transport Across Interfaces
,”
Nat. Mater.
,
11
(
6
), pp.
502
506
.10.1038/nmat3303
62.
Park
,
J.
,
Huang
,
J.
,
Wang
,
W.
,
Murphy
,
C. J.
, and
Cahill
,
D. G.
,
2012
, “
Heat Transport Between Au Nanorods, Surrounding Liquids, and Solid Supports
,”
J. Phys. Chem. C
,
116
(
50
), pp.
26335
26341
.10.1021/jp308130d
63.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.10.1063/1.4812749
64.
Wu
,
X.
,
Ni
,
Y.
,
Zhu
,
J.
,
Burrows
,
N. D.
,
Murphy
,
C. J.
,
Dumitrica
,
T.
, and
Wang
,
X.
,
2016
, “
Thermal Transport Across Surfactant Layers on Gold Nanorods in Aqueous Solution
,”
ACS Appl. Mater. Interfaces
,
8
(
16
), pp.
10581
10589
.10.1021/acsami.5b12163
65.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2017
, “
Thermal Energy Transport Across Hard–Soft Interfaces
,”
ACS Energy Lett.
,
2
(
10
), pp.
2283
2292
.10.1021/acsenergylett.7b00570
66.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.10.1038/nmat996
67.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5&6
), pp.
355
422
.10.1615/critrevbiomedeng.v31.i56.10
68.
Qin
,
Z.
,
Balasubramanian
,
S. K.
,
Wolkers
,
W. F.
,
Pearce
,
J. A.
, and
Bischof
,
J. C.
,
2014
, “
Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2392
2404
.10.1007/s10439-014-1100-y
69.
Font
,
F.
, and
Myers
,
T. G.
,
2013
, “
Spherically Symmetric Nanoparticle Melting With a Variable Phase Change Temperature
,”
J. Nanopart. Res.
,
15
, pp.
2086
2099
.10.1007/s11051-013-2086-3
70.
Chen
,
X.
,
Munjiza
,
A.
,
Zhang
,
K.
, and
Wen
,
D.
,
2014
, “
Molecular Dynamics Simulation of Heat Transfer From a Gold Nanoparticle to a Water Pool
,”
J. Phys. Chem. C
,
118
(
2
), pp.
1285
1293
.10.1021/jp410054j
71.
Piana
,
S.
,
Lindorff-Larsen
,
K.
, and
Shaw
,
D. E.
,
2012
, “
Protein Folding Kinetics and Thermodynamics From Atomistic Simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
44
), pp.
17845
17850
.10.1073/pnas.1201811109
You do not currently have access to this content.