Abstract

As developing finite element (FE) human body models for automotive impact is a time-consuming process, morphing using interpolation methods such as kriging has often been used to rapidly generate models of different shapes and sizes. Kriging can be computationally expensive when many control points (CPs) are used, i.e., for very detailed target geometry (e.g., shape of bones and skin). It can also lead to element quality issues (up to inverted elements) preventing the use of the morphed models for finite element simulation. This paper presents a workflow combining iterative subsampling and spatial subdivision methodology that effectively reduces the computational costs and allows for the generation of usable models through kriging with hundreds of thousands of control points. As subdivision introduces discontinuities in the interpolation function that can cause distortion of elements on the boundaries of individual subdivision areas, algorithms for smoothing the interpolation over those boundaries are proposed and compared. Those techniques and their combinations were tested and evaluated in a scenario of mass change on the detailed 50th percentile male model of the global human body models consortium (GHBMC): the model, which has body mass index (BMI) 25.34, was morphed toward a statistical surface model of a person with body mass index 20, 22.7 and 35. 234 777 control points were used to successfully morph the model in less than 15 min on an office PC. Open source implementation is provided.

References

1.
EuroNCAP
,
2018
, “
Pedestrian Test Protocol v8.5
,” European New Car Assessment Programme, Leuven, Belgium, accessed Oct. 19, 2020, https://www.euroncap.com/en/for-engineers/protocols/vulnerable-road-user-vru-protection/
2.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
3.
Shigeta
,
K.
,
Kitagawa
,
Y.
, and
Yasuki
,
T.
,
2009
, “
Development of Next Generation Human FE Model Capable of Organ Injury Prediction
,” Proceedings of the 21st Annual Enhanced Safety of Vehicles, Stuttgart, Germany, June 15–18, Paper No.
09–0111
.https://trid.trb.org/view/1099815
4.
Rice
,
T. M.
, and
Zhu
,
M.
,
2014
, “
Driver Obesity and the Risk of Fatal Injury During Traffic Collisions
,”
Emer. Med. J.
,
31
(
1
), pp.
9
12
.10.1136/emermed-2012-201859
5.
Reed
,
M. P.
,
Ebert-Hamilton
,
S. M.
, and
Rupp
,
J. D.
,
2012
, “
Effects of Obesity on Seat Belt Fit
,”
Traffic Injury Prev.
,
13
(
4
), pp.
364
372
.10.1080/15389588.2012.659363
6.
Vavalle
,
N. A.
,
Schoell
,
S. L.
,
Weaver
,
A. A.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2014
, “
Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model
,”
Stapp Car Crash J.
,
58
, pp.
361
384
.10.4271/2014-22-0013
7.
Hu
,
J.
,
Fanta
,
A.
,
Neal
,
M. O.
,
Reed
,
M. P.
, and
Wang
,
J.-T.
,
2016
, “
Vehicle Crash Simulations With Morphed GHBMC Human Models of Different Stature, BMI, and Age
,” Proceedings of the Fourth International Digital Human Modeling Conference, Montreal, PQ, Canada, June 15–17, Paper No.
13
.http://mreed.umtri.umich.edu/mreed/pubs/Hu_2016_DHM_morphed_GHBMC.pdf
8.
Zhang
,
K.
,
Cao
,
L.
,
Fanta
,
A.
,
Reed
,
M. P.
,
Neal
,
M.
,
Wang
,
J.-T.
,
Lin
,
C.-H.
, and
Hu
,
J.
,
2017
, “
An Automated Method to Morph Finite Element Whole-Body Human Models With a Wide Range of Stature and Body Shape for Both Men and Women
,”
J. Biomech.
,
60
, pp.
253
260
.10.1016/j.jbiomech.2017.06.015
9.
Hwang
,
E.
,
Hallman
,
J.
,
Klein
,
K.
,
Rupp
,
J.
,
Reed
,
M.
, and
Hu
,
J.
,
2016
, “
Rapid Development of Diverse Human Body Models for Crash Simulations Through Mesh Morphing
,”
SAE
Paper No. 2016-01-1491.10.4271/2016-01-1491
10.
Schoell
,
S.
,
Weaver
,
A.
,
Urban
,
J.
,
Jones
,
D.
,
Stitzel
,
J.
,
Hwang
,
E.
,
Reed
,
M.
, and
Rupp
,
J.
,
2015
, “
Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-Related Injury Risk
,”
Stapp Car Crash J.
,
59
, pp.
359
383
.https://pubmed.ncbi.nlm.nih.gov/26660751/
11.
Beillas
,
P.
, and
Berthet
,
F.
,
2017
, “
An Investigation of Human Body Model Morphing for the Assessment of Abdomen Responses to Impact Against a Population of Test Subjects
,”
Traffic Injury Prev.
,
18
(
Suppl. 1
), pp.
S142
S147
.10.1080/15389588.2017.1307971
12.
Janak
,
T.
,
Lafon
,
Y.
,
Petit
,
P.
, and
Beillas
,
P.
,
2018
, “
Transformation Smoothing to Use After Positioning of Finite Element Human Body Models
,” Proceedings of the 2018 IRCOBI Conference, Athens, Greece, Sept. 12–14, Paper No.
33
.http://www.ircobi.org/wordpress/downloads/irc18/pdf-files/33.pdf
13.
Jolivet
,
E.
,
Lafon
,
Y.
,
Petit
,
P.
, and
Beillas
,
P.
,
2015
, “
Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models
,”
Stapp Car Crash J.
,
59
, pp.
337
357
.10.4271/2015-22-0013
14.
Trochu
,
F.
,
1993
, “
A Contouring Program Based on Dual Kriging Interpolation
,”
Eng. Comput.
,
9
(
3
), pp.
160
177
.10.1007/BF01206346
15.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
,
Johns Hopkins University Press
,
Baltimore, MD
.
16.
Furrer
,
R.
,
Genton
,
M. G.
, and
Nychka
,
D.
,
2006
, “
Covariance Tapering for Interpolation of Large Spatial Datasets
,”
J. Comput. Graph. Stat.
,
15
(
3
), pp.
502
523
.10.1198/106186006X132178
17.
Hartman
,
L.
, and
Hössjer
,
O.
,
2008
, “
Fast Kriging of Large Data Sets With Gaussian Markov Random Fields
,”
Comput. Stat. Data Anal.
,
52
(
5
), pp.
2331
2349
.10.1016/j.csda.2007.09.018
18.
Sun
,
Y.
,
Li
,
B.
, and
Genton
,
M. G.
,
2012
, “
Geostatistics for Large Datasets
,”
Adv. Challenges Space-Time Modell. Natural Events
, pp.
55
77
.10.1007/978-3-642-17086-7
19.
Cressie
,
N.
, and
Johannesson
,
G.
,
2008
, “
Fixed Rank Kriging for Very Large Spatial Data Sets
,”
J. R. Stat. Soc.
,
70
(
1
), pp.
209
226
.10.1111/j.1467-9868.2007.00633.x
20.
Bradley
,
J. R.
,
Cressie
,
N.
, and
Shi
,
T.
,
2016
, “
A Comparison of Spatial Predictors When Datasets Could Be Very Large
,”
Stat. Surv.
,
10
(
0
), pp.
100
131
.10.1214/16-SS115
21.
Stein
,
M. L.
,
2014
, “
Limitations on Low Rank Approximations for Covariance Matrices of Spatial Data
,”
Spatial Stat.
,
8
, pp.
1
19
.10.1016/j.spasta.2013.06.003
22.
Haas
,
T. C.
,
1990
, “
Lognormal and Moving Window Methods of Estimating Acid Deposition
,”
J. Am. Stat. Assoc.
,
85
(
412
), pp.
950
963
.10.1080/01621459.1990.10474966
23.
Sang
,
H.
,
Jun
,
M.
, and
Huang
,
J. Z.
,
2011
, “
Covariance Approximation for Large Multivariate Spatial Data Sets With an Application to Multiple Climate Model Errors
,”
Ann. Appl. Stat.
,
5
(
4
), pp.
2519
2548
.10.1214/11-AOAS478
24.
Katzfuss
,
M.
, and
Gong
,
W.
,
2017
, “
Multi-Resolution Approximations of Gaussian Processes for Large Spatial Datasets
,” ArXiv
E-Prints 1710.08976
.https://www.researchgate.net/publication/320619767_Multi-resolution_approximations_of_Gaussian_processes_for_large_spatial_datasets
25.
Hu
,
J.
,
Zhang
,
K.
,
Fanta
,
A.
,
Hwang
,
E.
, and
Reed
,
M. P.
,
2017
, “
Effects of Male Stature and Body Shape on Thoracic Impact Response Using Parametric Finite Element Human Modeling
,” Proceedings of the 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Detroit, MI, June 5–8, Paper No.
17–0314
.https://www.semanticscholar.org/paper/Effects-of-male-stature-and-body-shape-on-thoracic-Hu-Zhang/936c13bf8fb3fbec95a59b0048fc566ddd5b0a95
26.
Piper-Project
, 2020, “Piper-Project,” Piper-Project, accessed Feb. 7, 2020, www.piper-project.org
27.
Reed
,
M. P.
,
Raschke
,
U.
,
Tirumali
,
R.
, and
Parkinson
,
M. B.
,
2014
, “
Developing and Implementing Parametric Human Body Shape Models in Ergonomics Software
,” Proceedings of the Third International Digital Human Modeling Symposium, Tokyo, Japan, May 20–22, Paper No.
50
. http://mreed.umtri.umich.edu/mreed/pubs/Reed_2014_DHM_Jack.pdf
28.
UMTRI
,
2017
, “
Human Shapes
,” University of Michigan, Transportation Research Institute, Ann Arbor, MI, accessed Sept. 19, 2020, humanshape.org
29.
Yamazaki
,
S.
,
Kouchi
,
M.
, and
Mochimaru
,
M.
,
2013
, “
Markerless Landmark Localization on Body Shape Scans by Non-Rigid Model Fitting
,”
Second Digital Human Modeling Symposium
, Ann Arbor, MI, June 11–13, Paper No.
43
.https://www.semanticscholar.org/paper/Markerless-landmark-localization-on-body-shape-by-Yamazaki-Kouchi/609cb5f685fb030addd307e2afcce1636bf5a476?p2df
30.
Eigen
,
2018
, “
Eigen
,” Eigen, accessed Oct. 19, 2020, eigen.tuxfamily.org
31.
Hardy
,
W. N.
,
Schneider
,
L. W.
, and
Rouhana
,
S. W.
,
2001
, “
Abdominal Impact Response to Rigid-Bar, Seatbelt, and Airbag Loading
,”
Stapp Car Crash J.
,
45
, pp.
1
32
.10.4271/2001-22-0001
32.
Knupp
,
P. M.
,
2000
, “
Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities: Part II—A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix
,”
Int. J. Numer. Methods Eng.
,
48
(
8
), pp.
1165
1185
.10.1002/(SICI)1097-0207(20000720)48:8<1165::AID-NME940>3.0.CO;2-Y
33.
Gao
,
X.
,
Huang
,
J.
,
Xu
,
K.
,
Pan
,
Z.
,
Deng
,
Z.
, and
Chen
,
G.
,
2017
, “
Evaluating Hex-Mesh Quality Metrics Via Correlation Analysis
,”
Comput. Graph. Forum
,
36
(
5
), pp.
105
116
.10.1111/cgf.13249
34.
StimpsonErnst
,
C.
,
Knupp
,
C.
,
Pébay
,
P.
, and
Thompson
,
P. D.
,
2007
, “
The Verdict Library Reference Manual
,” Sandia National Laboratories, Albuquerque, NM.https://www.researchgate.net/publication/228543293_The_Verdict_Library_Reference_Manual
35.
LS-DYNA AWG
, “
Modeling Guidelines Document
,” LSTC, Livermore, CA, accessed July 2, 2020, https://awg.lstc.com/tiki-index.php?page=MGD
36.
Schwartz
,
D.
,
2015
, “
Development of a Computationally Efficient Full Human Body Finite Element Model
,”
Master thesis
, Virginia Tech—Wake Forest University, Winston–Salem, NC.10.1080/15389588.2015.1021418
37.
Holcombe
,
S. A.
, and
Wang
,
S. C.
,
2014
, “
Subcutaneous Fat Distribution in the Human Torso
,”
IRCOBI Conference Proceedings—International Research Council on the Biomechanics of Injury
, Berlin, Germany, Sept. 10–12, pp.
389
396
.http://www.ircobi.org/wordpress/downloads/irc14/pdf_files/43.pdf
38.
Duck
,
F. A.
,
1990
,
Physical Properties of Tissue: A Comprehensive Reference Book
,
Academic Press
,
Cambridge, MA
.
39.
Brown
,
R. A.
,
2015
, “
Building a Balanced k-d Tree in O(kn Log n) Time
,”
J. Comput. Graph. Tech. (JCGT)
,
4
(
1
), pp.
50
68
.https://arxiv.org/abs/1410.5420
40.
Heaton
,
M. J.
,
Datta
,
A.
,
Finley
,
A. O.
,
Furrer
,
R.
,
Guinness
,
J.
,
Guhaniyogi
,
R.
,
Gerber
,
F.
,
Gramacy
,
R. B.
,
Hammerling
,
D.
,
Katzfuss
,
M.
,
Lindgren
,
F.
,
Nychka
,
D. W.
,
Sun
,
F.
, and
Zammit-Mangion
,
A.
,
2019
, “
A Case Study Competition Among Methods for Analyzing Large Spatial Data
,”
J. Agric., Biol. Environ. Stat.
,
24
(
3
), pp.
398
425
.10.1007/s13253-018-00348-w
41.
Auñón
,
J.
, and
Gómez-Hernández
,
J. J.
,
2000
, “
Dual Kriging With Local Neighborhoods: Application to the Representation of Surfaces
,”
Math. Geol.
,
32
(
1
), pp.
69
85
.10.1023/A:1007554801750
42.
Wan
,
X.
,
Liu
,
S.
,
Chen
,
J. X.
, and
Jin
,
X.
,
2012
, “
Geodesic Distance-Based Realistic Facial Animation Using RBF Interpolation
,”
Comput. Sci. Eng.
,
14
(
5
), pp.
49
55
.10.1109/MCSE.2011.96
43.
Lipman
,
Y.
,
Rustamov
,
R. M.
, and
Funkhouser
,
T. A.
,
2010
, “
Biharmonic Distance
,”
ACM Trans. Graph.
,
29
(
3
), pp.
1
27
.10.1145/1805964.1805971
44.
Biancolini
,
M. E.
,
Viola
,
I. M.
, and
Riotte
,
M.
,
2014
, “
Sails Trim Optimisation Using CFD and RBF Mesh Morphing
,”
Comput. Fluids
,
93
, pp.
46
60
.10.1016/j.compfluid.2014.01.007
45.
Zheng
,
S.-X.
,
Li
,
J.
, and
Sun
,
Q.-F.
,
2011
, “
A Novel 3D Morphing Approach for Tooth Occlusal Surface Reconstruction
,”
Comput. Aided Des.
,
43
(
3
), pp.
293
302
.10.1016/j.cad.2010.11.003
46.
Grassi
,
L.
,
Hraiech
,
N.
,
Schileo
,
E.
,
Ansaloni
,
M.
,
Rochette
,
M.
, and
Viceconti
,
M.
,
2011
, “
Evaluation of the Generality and Accuracy of a New Mesh Morphing Procedure for the Human Femur
,”
Med. Eng. Phys.
,
33
(
1
), pp.
112
120
.10.1016/j.medengphy.2010.09.014
47.
Seon
,
G.
,
Nikishkov
,
Y.
,
Makeev
,
A.
, and
Shonkwiler
,
B.
,
2016
, “
Mesh Morphing Methodology for Strength Predictions in Composites
,”
Compos. Struct.
,
140
, pp.
612
620
.10.1016/j.compstruct.2015.12.021
48.
Baxter
,
B.
,
1992
,
The Interpolation Theory of Radial Basis Functions
,
University of Cambridge
,
Cambridge, UK
.
49.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem., Metall. Min. Soc. South Africa
,
52
(
6
), pp.
119
139
.https://hdl.handle.net/10520/AJA0038223X_4792
You do not currently have access to this content.