Abstract

The design of rehabilitation devices for patients experiencing musculoskeletal disorders (MSDs) requires a great deal of attention. This article aims to develop a comprehensive model of the upper-limb complex to guide the design of robotic rehabilitation devices that prioritize patient safety, while targeting effective rehabilitative treatment. A 9 degree-of-freedom kinematic model of the upper-limb complex is derived to assess the workspace of a constrained arm as an evaluation method of such devices. Through a novel differential inverse kinematic method accounting for constraints on all joints1820, the model determines the workspaces in which a patient is able to perform rehabilitative tasks and those regions where the patient needs assistance due to joint range limitations resulting from an MSD. Constraints are imposed on each joint by mapping the joint angles to saturation functions, whose joint-space derivative near the physical limitation angles approaches zero. The model Jacobian is reevaluated based on the nonlinearly mapped joint angles, providing a means of compensating for redundancy while guaranteeing feasible inverse kinematic solutions. The method is validated in three scenarios with different constraints on the elbow and palm orientations. By measuring the lengths of arm segments and the range of motion for each joint, the total workspace of a patient experiencing an upper-limb MSD can be compared to a preinjured state. This method determines the locations in which a rehabilitation device must provide assistance to facilitate movement within reachable space that is limited by any joint restrictions resulting from MSDs.

References

1.
Hochstenbach-Waelen
,
A.
, and
Seelen
,
H. A.
,
2012
, “
Embracing Change: Practical and Theoretical Considerations for Successful Implementation of Technology Assisting Upper Limb Training in Stroke
,”
J. Neuroeng. Rehabil.
,
9
(
1
), p.
52
.10.1186/1743-0003-9-52
2.
Vignos
,
P. J.
, Jr.
,
1983
, “
Physical Models of Rehabilitation in Neuromuscular Disease
,”
Muscle Nerve
,
6
(
5
), pp.
323
338
.10.1002/mus.880060502
3.
Rios
, et al.,
A.
,
2016
, “
Playfulness in Children With Limited Motor Abilities When Using a Robot
,”
Phys. Occup. Ther. Pediatr.
,
36
(
3
), pp.
232
246
.10.3109/01942638.2015.1076559
4.
Paneth
,
N.
,
Hong
,
T.
, and
Korzeniewski
,
S.
,
2006
, “
The Descriptive Epidemiology of Cerebral Palsy
,”
Clin. Perinatol.
,
33
(
2
), pp.
251
267
.10.1016/j.clp.2006.03.011
5.
van der Ploeg
,
H. P.
,
van der Beek
,
A. J.
,
van der Woude
,
L. H. V.
, and
van Mechelen
,
W.
,
2004
, “
Physical Activity for People With a Disability
,”
Sports Med.
,
34
(
10
), pp.
639
649
.10.2165/00007256-200434100-00002
6.
Graf
,
B.
,
Hans
,
A.
,
Kubacki
,
J.
, and
Schraft
,
R.
,
2002
, “
Robotic Home Assistant Care-o-Bot II
,”
Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society
, Engineering in Medicine and Biology, Houston, TX, Oct. 23–26, Vol.
3
, pp.
2343
2344
.10.1109/IEMBS.2002.1053313
7.
Kawamura
,
K.
,
Bagchi
,
S.
,
Iskarous
,
M.
, and
Bishay
,
M.
,
1995
, “
Intelligent Robotic Systems in Service of the Disabled
,”
IEEE Trans. Rehabil. Eng.
,
3
(
1
), pp.
14
21
.10.1109/86.372888
8.
Najafi
,
M.
,
Sharifi
,
M.
,
Adams
,
K.
, and
Tavakoli
,
M.
,
2017
, “
Robotic Assistance for Children With Cerebral Palsy Based on Learning From Tele-Cooperative Demonstration
,”
Int. J. Intell. Rob. Appl.
,
1
(
1
), pp.
43
54
.10.1007/s41315-016-0006-2
9.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Loos
,
M. V. D.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Yap
,
R.
,
2006
, “
MIME Robotic Device for Upper-Limb Neurorehabilitation in Subacute Stroke Subjects: A Follow-Up Study
,”
J. Rehabil. Res. Dev.
,
43
(
5
), p.
631
.10.1682/JRRD.2005.02.0044
10.
Krebs
,
H.
,
Ferraro
,
M.
,
Buerger
,
S. P.
,
Newbery
,
M. J.
,
Makiyama
,
A.
,
Sandmann
,
M.
,
Lynch
,
D.
,
Volpe
,
B. T.
, and
Hogan
,
N.
,
2004
, “
Rehabilitation Robotics: Pilot Trial of a Spatial Extension for MIT-Manus
,”
J. Neuroeng. Rehabil.
,
1
(
1
), p.
5
.10.1186/1743-0003-1-5
11.
Mohammadi
,
E.
,
Zohoor
,
H.
, and
Khadem
,
M.
,
2016
, “
Design and Prototype of an Active Assistive Exoskeletal Robot for Rehabilitation of Elbow and Wrist
,”
Sci. Iranica. Trans. B, Mech. Eng.
,
23
(
3
), pp.
998
1005
.10.24200/sci.2016.3868
12.
Centonze
,
D.
,
Koch
,
G.
,
Versace
,
V.
,
Mori
,
F.
,
Rossi
,
S.
,
Brusa
,
L.
,
Grossi
,
K.
,
Torelli
,
F.
,
Prosperetti
,
C.
,
Cervellino
,
A.
,
Marfia
,
G. A.
,
Stanzione
,
P.
,
Marciani
,
M. G.
,
Boffa
,
L.
, and
Bernardi
,
G.
,
2007
, “
Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Ameliorates Spasticity in Multiple Sclerosis
,”
Neurology
,
68
(
13
), pp.
1045
1050
.10.1212/01.wnl.0000257818.16952.62
13.
McLaughlin
,
J. F.
,
Bjornson
,
K. F.
,
Astley
,
S. J.
,
Graubert
,
C.
,
Hays
,
R. M.
,
Roberts
,
T. S.
,
Price
,
R.
, and
Temkin
,
N.
,
2008
, “
Selective Dorsal Rhizotomy: Efficacy and Safety in an Investigator-Masked Randomized Clinical Trial
,”
Dev. Med. Child Neurol.
,
40
(
4
), pp.
220
232
.10.1111/j.1469-8749.1998.tb15454.x
14.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Van der Loos
,
M.
,
2002
, “
Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke
,”
Arch. Phys. Med. Rehabil.
,
83
(
7
), pp.
952
959
.10.1053/apmr.2001.33101
15.
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Groothuis-Oudshoorn
,
C. G. M.
,
Hermens
,
H. J.
, and
IJzerman
,
M. J.
,
2006
, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
,
43
(
2
), p.
171
.10.1682/JRRD.2005.04.0076
16.
Dietz
,
V.
, and
Sinkjaer
,
T.
,
2007
, “
Spastic Movement Disorder: Impaired Reflex Function and Altered Muscle Mechanics
,”
Lancet Neurol.
,
6
(
8
), pp.
725
733
.10.1016/S1474-4422(07)70193-X
17.
Biering-Sørensen
,
F.
,
Nielsen
,
J. B.
, and
Klinge
,
K.
,
2006
, “
Spasticity-Assessment: A Review
,”
Spinal Cord
,
44
(
12
), pp.
708
722
.10.1038/sj.sc.3101928
18.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H. F.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
19.
Vicentini
,
F.
,
Pedrocchi
,
N.
,
Malosio
,
M.
, and
Molinari Tosatti
,
L.
,
2014
, “
Safenet: A Methodology for Integrating General-Purpose Unsafe Devices in Safe-Robot Rehabilitation Systems
,”
Comput. Methods Programs Biomed.
,
116
(
2
), pp.
156
168
.10.1016/j.cmpb.2014.03.001
20.
Charalambous
,
C. P.
,
2014
, “
Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity
,”
Classic Papers in Orthopaedics
,
Springer
, Berlin, pp.
415
417
.
21.
Rossa
,
C.
,
Najafi
,
M.
,
Tavakoli
,
M.
, and
Adams
,
K.
,
2017
, “
Nonlinear Workspace Mapping for Telerobotic Assistance of Upper Limb in Patients With Severe Movement Disorders
,”
2017 IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), Banff, AB, Canada, Oct. 5–8, pp.
2255
2260
.10.1109/SMC.2017.8122956
22.
Borbély
,
B. J.
, and
Szolgay
,
P.
,
2017
, “
Real-Time Inverse Kinematics for the Upper Limb: A Model- Algorithm Using Segment Orientations
,”
Biomed. Eng. Online
,
16
(
1
), p.
21
.10.1186/s12938-016-0291-x
23.
Wang
,
K.
,
Li
,
S.
,
Xu
,
C.
, and
Yu
,
N.
,
2016
, “
An Extended Kinematic Model for Arm Rehabilitation Training and Assessment
,” 2016 International Conference on Advanced Robotics and Mechatronics (
ICARM
), Macau, China, Aug. 18–20, pp.
117
121
.10.1109/ICARM.2016.7606905
24.
Lioulemes
,
A.
,
Theofanidis
,
M.
, and
Makedon
,
F.
,
2016
, “
Quantitative Analysis of the Human Upper-Limp Kinematic Model for Robot-Based Rehabilitation Applications
,” 2016 IEEE International Conference on Automation Science and Engineering (
CASE
), Fort Worth, TX, Aug. 21–25, pp.
1061
1066
.10.1109/COASE.2016.7743521
25.
Barri
,
M. H.
, and
Widyotriatmo
,
A.
,
2018
, “
Path Reference Generation for Upper-Limb Rehabilitation With Kinematic Model
,”
2018 IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems
(
Robionetics
), Bandung, Indonesia, Aug. 8–10, pp.
38
43
.10.1109/ROBIONETICS.2018.8674676
26.
Fazel-Rezai
,
R.
,
Shwedyk
,
E.
, and
Onyshko
,
S.
,
1997
, “
Three Dimensional Kinematic Model of the Upper Limb With Ten Degrees of Freedom
,”
Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering'
(
Cat. No. 97CH36136
), Chicago, IL, Oct. 30–Nov. 2, Vol.
4
, pp.
1735
1737
.10.1109/IEMBS.1997.757058
27.
Masinghe
,
W.
,
Collier
,
G.
,
Ordys
,
A.
, and
Nanayakkara
,
T.
,
2012
, “
A Novel Approach to Determine the Inverse Kinematics of a Human Upper Limb Model With 9 Degrees of Freedom
,”
2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences
, Langkawi, Malaysia, Dec. 17–19, pp.
525
530
.10.1109/IECBES.2012.6498074
28.
Abdel-Malek
,
K.
,
Yang
,
J.
,
Brand
,
R.
, and
Tanbour
,
E.
,
2004
, “
Towards Understanding the Workspace of Human Limbs
,”
Ergonomics
,
47
(
13
), pp.
1386
1405
.10.1080/00140130410001724255
29.
Lenarcic
,
J.
, and
Umek
,
A.
,
1994
, “
Simple Model of Human Arm Reachable Workspace
,”
IEEE Trans. Syst., Man, Cybern.
,
24
(
8
), pp.
1239
1246
.10.1109/21.299704
30.
Benati
,
M.
,
Gaglio
,
S.
,
Morasso
,
P.
,
Tagliasco
,
V.
, and
Zaccaria
,
R.
,
1980
, “
Anthropomorphic Robotics
,”
Biol. Cybern.
,
38
(
3
), pp.
125
140
.10.1007/BF00337402
31.
Bolsterlee
,
B.
,
Veeger
,
D. H.
, and
Chadwick
,
E. K.
,
2013
, “
Clinical Applications of Musculoskeletal Modelling for the Shoulder and Upper Limb
,”
Med. Biol. Eng. Comput.
,
51
(
9
), pp.
953
963
.10.1007/s11517-013-1099-5
32.
Hartenberg
,
R.
, and
Denavit
,
J.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
(
2
), pp.
215
221
.https://home.konkuk.ac.kr/~cgkang/courses/robotics/courseMaterials/DHpaper.pdf
33.
Xia
,
Y.
, and
Wang
,
J.
,
2001
, “
A Dual Neural Network for Kinematic Control of Redundant Robot Manipulators
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
31
(
1
), pp.
147
154
.10.1109/3477.907574
34.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1988
, “
A Solution Algorithm to the Inverse Kinematic Problem for Redundant Manipulators
,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
403
410
.10.1109/56.804
35.
Alexander
,
R.
,
1997
, “
A Minimum Energy Cost Hypothesis for Human Arm Trajectories
,”
Biol. Cybern.
,
76
(
2
), pp.
97
105
.10.1007/s004220050324
36.
Ohta
,
K.
,
Svinin
,
M. M.
,
Luo
,
Z. W.
,
Hosoe
,
S.
, and
Laboissière
,
R.
,
2004
, “
Optimal Trajectory Formation of Constrained Human Arm Reaching Movements
,”
Biol. Cybern.
,
91
(
1
), pp.
23
36
.10.1007/s00422-004-0491-5
37.
Michaud
,
B.
,
Jackson
,
M.
,
Arndt
,
A.
,
Lundberg
,
A.
, and
Begon
,
M.
,
2016
, “
Determining In Vivo Sternoclavicular, Acromioclavicular and Glenohumeral Joint Centre Locations From Skin Markers, ct-Scans and Intracortical Pins: A Comparison Study
,”
Med. Eng. Phys.
,
38
(
3
), pp.
290
296
.10.1016/j.medengphy.2015.12.004
38.
Fraser
,
D.
, and
Potter
,
J.
,
1969
, “
The Optimum Linear Smoother as a Combination of Two Optimum Linear Filters
,”
IEEE Trans. Autom. Control
,
14
(
4
), pp.
387
390
.10.1109/TAC.1969.1099196
39.
La Delfa
,
N. J.
, and
Potvin
,
J. R.
,
2017
, “
The Arm Force Field Method to Predict Manual Arm Strength Based on Only Hand Location and Force Direction
,”
Appl. Ergonom.
,
59
, pp.
410
421
.10.1016/j.apergo.2016.09.012
You do not currently have access to this content.