Abstract

Introduction: Simulations based on computational musculoskeletal models are powerful tools for evaluating the effects of potential biomechanical interventions, such as implementing a novel prosthesis. However, the utility of simulations to evaluate the effects of varied prosthesis design parameters on gait mechanics has not been fully realized due to the lack of a readily-available limb loss-specific gait model and methods for efficiently modeling the energy storage and return dynamics of passive foot prostheses. The purpose of this study was to develop and validate a forward simulation-capable gait model with lower-limb loss and a semi-active variable-stiffness foot (VSF) prosthesis. Methods: A seven-segment 28-DoF gait model was developed and forward kinematics simulations, in which experimentally observed joint kinematics were applied and the resulting contact forces under the prosthesis evolved accordingly, were computed for four subjects with unilateral below-knee amputation walking with a VSF. Results: Model-predicted resultant ground reaction force (GRFR) matched well under trial-specific optimized parameter conditions (mean R2: 0.97, RMSE: 7.7% body weight (BW)) and unoptimized (subject-specific, but not trial-specific) parameter conditions (mean R2: 0.93, RMSE: 12% BW). Simulated anterior-posterior center of pressure demonstrated a mean R2 = 0.64 and RMSE= 14% foot length. Simulated kinematics remained consistent with input data (0.23 deg RMSE, R2 > 0.99) for all conditions. Conclusions: These methods may be useful for simulating gait among individuals with lower-limb loss and predicting GRFR arising from gait with novel VSF prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.

References

1.
Schaarschmidt
,
M.
,
Lipfert
,
S. W.
,
Meier-Gratz
,
C.
,
Scholle
,
H. C.
, and
Seyfarth
,
A.
,
2012
, “
Functional Gait Asymmetry of Unilateral Transfemoral Amputees
,”
Hum. Mov. Sci.
,
31
(
4
), pp.
907
917
.10.1016/j.humov.2011.09.004
2.
Sanderson
,
D. J.
, and
Martin
,
P. E.
,
1997
, “
Lower Extremity Kinematic and Kinetic Adaptations in Unilateral Below-Knee Amputees During Walking
,”
Gait Posture
,
6
(
2
), pp.
126
136
.10.1016/S0966-6362(97)01112-0
3.
van Schaik
,
L.
,
Geertzen
,
J. H.
,
Dijkstra
,
P. U.
, and
Dekker
,
R.
,
2019
, “
Metabolic Costs of Activities of Daily Living in Subjects With Lower Limb Amputation: A Systematic Review and Meta-Analysis. Article Submitted for Publication
,”
PLoS One
,
14
(
3
), p.
e0213256
10.1371/journal.pone.0213256
4.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.10.1016/j.jbiomech.2012.11.051
5.
Mckechnie
,
P. S.
, and
John
,
A.
,
2014
, “
Anxiety and Depression Following Traumatic Limb Amputation: A Systematic Review
,”
Injury
,
45
(
12
), pp.
1859
1866
.10.1016/j.injury.2014.09.015
6.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
JRRD
,
45
(
1
), pp.
15
30
.10.1682/JRRD.2006.11.0147
7.
Sanders
,
J. E.
, and
Daly
,
C. H.
,
1993
, “
Measurement of Stresses in Three Orthogonal Directions at the Residual Limb-Prosthetic Socket Interface
,”
IEEE Trans. Rehabil. Eng.
,
1
(
2
), pp.
79
85
.10.1109/86.242421
8.
Al-Fakih
,
E. A.
,
Abu Osman
,
N. A.
, and
Mahmad Adikan
,
F. R.
,
2016
, “
Techniques for Interface Stress Measurements Within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research
,”
Sensors (Switzerland)
,
16
(
7
), p.
1119
.10.3390/s16071119
9.
Courtney
,
A.
,
Orendurff
,
M. S.
, and
Buis
,
A.
,
2016
, “
Effect of Alignment Perturbations in a Trans-Tibial Prosthesis User: A Pilot Study
,”
J. Rehabil. Med.
,
48
(
4
), pp.
396
401
.10.2340/16501977-2075
10.
Casillas
,
J. M.
,
Dulieu
,
V.
,
Cohen
,
M.
,
Marcer
,
I.
, and
Didier
,
J. P.
,
1995
, “
Bioenergetic Comparison of a New Energy-Storing Foot and SACH Foot in Traumatic Below-Knee Vascular Amputations
,”
Arch. Phys. Med. Rehabil.
,
76
(
1
), pp.
39
44
.10.1016/S0003-9993(95)80040-9
11.
Postema
,
K.
,
Hermens
,
H. J.
,
De Vries
,
J.
,
Koopman
,
H. F. J. M.
, and
Eisma
,
W. H.
,
1997
, “
Energy Storage and Release of Prosthetic Feet Part 1: Biomechanical Analysis Related to User Benefits
,”
Prosthet. Orthot. Int.
,
21
(
1
), pp.
17
27
.10.3109/03093649709164526
12.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
DeMers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
13.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
OpenSim: A Musculoskeletal Modeling and Simulation Framework for in Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
(
2
), pp.
212
232
.10.1016/j.piutam.2011.04.021
14.
Porsa
,
S.
,
Lin
,
Y.-C.
, and
Pandy
,
M. G.
,
2016
, “
Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory With Implementation in OpenSim
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2542
2557
.10.1007/s10439-015-1538-6
15.
LaPrè
,
A. K.
,
Price
,
M. A.
,
Wedge
,
R. D.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2018
, “
Approach for Gait Analysis in Persons With Limb Loss Including Residuum and Prosthesis Socket Dynamics
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
4
), p.
e2936
.10.1002/cnm.2936
16.
Willson
,
A. M.
,
Richburg
,
C. A.
,
Czerniecki
,
J.
,
Steele
,
K. M.
, and
Aubin
,
P. M.
,
2020
, “
Design and Development of a Quasi-Passive Transtibial Biarticular Prosthesis to Replicate Gastrocnemius Function in Walking
,”
ASME J. Med. Device.
,
14
(
2
), p.
025001
.10.1115/1.4045879
17.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2012
, “
Optimization of Prosthetic Foot Stiffness to Reduce Metabolic Cost and Intact Knee Loading During Below-Knee Amputee Walking: A Theoretical Study
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
111005
.10.1115/1.4007824
18.
Russel Esposito
,
E.
, and
Miller
,
R. H.
,
2018
, “
Maintenance of Muscle Strength Retains a Normal Metabolic Cost in Simulated Walking After Transtibial Limb Loss
,”
PLoS One
,
13
(
1
), pp.
e0191310
e0191319
.10.1371/journal.pone.0191310
19.
Glanzer
,
E. M.
, and
Adamczyk
,
P. G.
,
2018
, “
Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2351
2359
.10.1109/TNSRE.2018.2877962
20.
McGeehan
,
M.
,
Adamczyk
,
P.
,
Nichols
,
K.
, and
Hahn
,
M.
,
2021
, “
A Reduced Order Computational Model of a Semi-Active Variable-Stiffness Foot Prosthesis
,”
ASME J. Biomech. Eng.
,
143
(
7
), p. 074503.10.1115/1.4050456
21.
Mitsuhashi
,
N.
,
Fujieda
,
K.
,
Tamura
,
T.
,
Kawamoto
,
S.
,
Takagi
,
T.
, and
Okubo
,
K.
,
2009
, “
BodyParts3D: 3D Structure Database for Anatomical Concepts
,”
Nucl. Acids Res.
,
37
(
Database
), pp.
D782
D785
.10.1093/nar/gkn613
22.
Jia
,
X.
,
Zhang
,
M.
, and
Lee
,
W. C. C.
,
2004
, “
Load Transfer Mechanics Between Trans-Tibial Prosthetic Socket and Residual Limb - Dynamic Effects
,”
J. Biomech.
,
37
(
9
), pp.
1371
1377
.10.1016/j.jbiomech.2003.12.024
23.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.10.1016/0021-9290(95)00178-6
24.
Miller
,
S.
,
2020
, “
Simscape Multibody Contact Forces Library
,” GitHub, accessed Aug. 23, 2021, https://github.com/mathworks/Simscape-Multibody-Contact-Forces-Library/releases/tag/21.1.5.0
25.
Lugade
,
V.
, and
Kaufman
,
K.
,
2014
, “
Center of Pressure Trajectory During Gait: A Comparison of Four Foot Positions
,”
Gait Posture
,
40
(
4
), pp.
719
722
.10.1016/j.gaitpost.2014.07.001
26.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2015
, “
Foot–Ground Contact Modeling Within Human Gait Simulations: From Kelvin–Voigt to Hyper-Volumetric Models
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
393
407
.10.1007/s11044-015-9467-6
27.
Lemaitre
,
J.
,
2001
,
Handbook of Materials Behavior Models
,
Academic Press
, Cambridge, MA.
28.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2005
, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
,
38
(
1
), pp.
107
116
.10.1016/j.jbiomech.2004.03.009
29.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
30.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion - Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
31.
Wu
,
G.
, and
Cavanagh
,
P. R.
,
1995
, “
ISB Recommendations for the Standardized Reporting in Kinematic Data
,”
J. Biomech.
,
28
(
10
), pp.
1257
1261
.10.1016/0021-9290(95)00017-C
32.
Peterson
,
C. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2011
, “
Braking and Propulsive Impulses Increase With Speed During Accelerated and Decelerated Walking
,”
Gait Posture
,
33
(
4
), pp.
562
567
.10.1016/j.gaitpost.2011.01.010
33.
Van Hulle
,
R.
,
Schwartz
,
C.
,
Denoël
,
V.
,
Croisier
,
J.-L.
,
Forthomme
,
B.
, and
Brüls
,
O.
,
2020
, “
A Foot/Ground Contact Model for Biomechanical Inverse Dynamics Analysis
,”
J. Biomech.
,
100
(
2020
), p. 109412.10.1016/j.jbiomech.2019.109412
34.
Lopes
,
D. S.
,
Neptune
,
R. R.
,
Ambrósio
,
J. A.
, and
Silva
,
M. T.
,
2015
, “
A Superellipsoid-Plane Model for Simulating Foot-Ground Contact During Human Gait
,”
Comput. Methods Biomech. Biomed. Eng.
, 19(9), pp.
954
963
.10.1080/10255842.2015.1081181
35.
Brown
,
P.
, and
McPhee
,
J.
,
2018
, “
A 3D Ellipsoidal Volumetric Foot–Ground Contact Model for Forward Dynamics
,”
Multibody Syst. Dyn.
,
42
(
4
), pp.
447
467
.10.1007/s11044-017-9605-4
36.
Jackson
,
J. N.
,
Hass
,
C. J.
, and
Fregly
,
B. J.
,
2016
, “
Development of a Subject-Specific Foot-Ground Contact Model for Walking
,”
ASME J. Biomech. Eng.
,
138
(
9
), p.
091002
.10.1115/1.4034060
37.
Dembia
,
C. L.
,
Silder
,
A.
,
Uchida
,
T. K.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2017
, “
Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Walking With Heavy Loads
,”
PLoS One
,
12
(
7
), p.
e0180320
.10.1371/journal.pone.0180320
38.
Khamar
,
M.
,
Edrisi
,
M.
, and
Zahiri
,
M.
,
2019
, “
Human-Exoskeleton Control Simulation, Kinetic and Kinematic Modeling and Parameters Extraction
,”
MethodsX
,
6
, pp.
1838
1846
.10.1016/j.mex.2019.08.014
39.
Winter
,
D. A.
, and
Sienko
,
S. E.
,
1988
, “
Biomechanics of Below-Knee Amputee Gait
,”
J. Biomech.
,
21
(
5
), pp.
361
367
.10.1016/0021-9290(88)90142-X
40.
Su
,
P.-F.
,
Gard
,
S. A.
,
Lipschutz
,
R. D.
, and
Kuiken
,
T. A.
,
2008
, “
Differences in Gait Characteristics Between Persons With Bilateral Transtibial Amputations, Due to Peripheral Vascular Disease and Trauma, and Able-Bodied Ambulators
,”
Arch. Phys. Med. Rehabil.
,
89
(
7
), pp.
1386
1394
.10.1016/j.apmr.2007.10.050
41.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London. Ser. B - Biol. Sci.
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
42.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.10.1115/1.1531112
You do not currently have access to this content.