Abstract

Rotator cuff (RC) tears cause pain and functional disability of the shoulder. Despite advances in suture anchors, there are still reports about the incidence of surgical-related injuries to RC mainly associated with sutures. The purpose of this study was to design and evaluate the mechanical behavior of sutureless implants to repair RC tears. We hypothesized that the implants present mechanical characteristics suitable for the surgical treatment of RC tears as suture anchors. Three different implants (T1, T2, T3) were designed and fabricated with titanium: T1 has two rods and rectangular head; T2 has two rods with a small opening and enlarged rectangular head; and T3 has three rods and a circular head. The implants were fixed in rigid polyurethane foam blocks by a series of blows, and the applied mechanical loads along with the number of blows were quantified. Pullout tests using tapes fixed between the implant head and testing machine grip were conducted until implant failure. The maximum pullout strength and displacement of the implant relative to the rigid foam block were computed. Statistical significance was set at p < 0.05. Owing to its geometric configuration, implant T2 presented the best characteristics related to stability, strength, and ease of insertion. Implant T2 confirms our hypothesis that its mechanical behavior is compatible with that of suture anchors, which could lead to the reduction of RC repair failures and simplify the arthroscopic procedure.

References

1.
Frisch
,
K.
,
Marcu
,
D.
,
Baer
,
G.
,
Thelen
,
D.
, and
Ray
,
V.
,
2014
, “
The Influence of Partial and Full Thickness Tears on Infraspinatus Tendo Strain Patterns
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051004
.10.1115/1.4026643
2.
Rahman
,
H.
,
Currier
,
E.
,
Johnson
,
M.
,
Goding
,
R.
,
Johnson
,
A. W.
, and
Kersh
,
M. E.
,
2017
, “
Primary and Secondary Consequences of Rotator Cuff Injury on Joint Stabilizing Tissues in the Shoulder
,”
ASME J. Biomech. Eng.
,
139
(
11
), p.
110801
.10.1115/1.4037917
3.
Matsen
,
F. A.
,
2008
, “
Rotator-Cuff Failure
,”
N. Engl. J. Med.
,
358
, pp.
2138
2147
.10.1056/NEJMcp0800814
4.
Altintas
,
B.
,
Anderson
,
N. L.
,
Pitta
,
R.
,
Buckley
,
P. S.
,
Bhatia
,
S.
, and
Provencher
,
M. T.
,
2019
, “
Repair of Rotator Cuff Tears in the Elderly: Does It Make Sense? A Systematic Review
,”
Am. J. Sports Med.
, 48(3), pp.
1
10
.10.1177/0363546519834574
5.
Micallef
,
J.
,
Pandya
,
J.
, and
Low
,
A. K.
,
2019
, “
Management of Rotator Cuff Tears in the Elderly Population
,”
Maturitas
,
123
, pp.
9
14
.10.1016/j.maturitas.2019.01.016
6.
Cummins
,
C. A.
,
Appleyard
,
R. C.
,
Strickland
,
S.
,
Haen
,
P.-S.
,
Chen
,
S.
,
MurrelL
,
G. A. C.
,
2005
,
Rotator Cuff Repair: An Ex Vivo Analysis of Suture Anchor Repair Techniques on Initial Load to Failure
,”
Arthroscopy
,
21
, pp.
1236
1241
.10.1016/j.arthro.2005.06.022
7.
Mazzocca
,
A. D.
,
Millett
,
P. J.
,
Guanche
,
C. A.
,
Santangelo
,
S. A.
, and
Arciero
,
A.
,
2005
, “
Arthroscopic Single-Row Versus Double-Row Suture Anchor Rotator Cuff Repair
,”
Am. J. Sports Med.
,
33
(
12
), pp.
1861
1868
.10.1177/0363546505279575
8.
Chae
,
S. W.
,
Kang
,
J. Y.
,
Lee
,
J.
,
Han
,
S. H.
, and
Kim
,
S. Y.
,
2018
,“
Effect of Structural Design on the Pullout Strength of Suture Anchors for Rotator Cuff Repair
,”
J. Orthop. Res.
,
36
(
12
), pp.
3318
3327
.10.1002/jor.24135
9.
Denard
,
P. J.
, and
Burkhart
,
S. S.
,
2013
, “
The Evolution of Suture Anchors in Arthroscopic Rotator Cuff Repair
,”
Arthroscopy
,
29
(
9
), pp.
1589
1595
.10.1016/j.arthro.2013.05.011
10.
Barber
,
F. A.
, and
Herbert
,
M. A.
,
2017
, “
All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode
,”
Arthroscopy
,
33
(
6
), pp.
1113
1121
.10.1016/j.arthro.2016.09.031
11.
Nho
,
S. J.
,
Yadav
,
H.
,
Shindle
,
M. K.
, and
MacGillivray
,
J. D.
,
2008
, “
Rotator Cuff Degeneration: Etiology and Pathogenesis
,”
Am. J. Sports Med.
,
36
(
5
), pp.
987
993
.10.1177/0363546508317344
12.
Barber
,
F. A.
,
Herbert
,
M. A.
,
Hapa
,
O.
,
Rapley
,
J. H.
,
Barber
,
C. A. K.
, and
Bynum
,
J. A.
,
2011
, “
Biomechanical Analysis of Pullout Strengths of Rotator Cuff and Glenoid Anchors: 2011 Update
,”
Arthroscopy
,
27
(
7
), pp.
895
905
.10.1016/j.arthro.2011.02.016
13.
Cummins
,
C. A.
,
Strickland
,
S.
,
Appleyard
,
R. C.
,
Szomor
,
Z. L.
,
Marshall
,
J.
,
Murrell
,
G. A. C.
,
2003
, “
Rotator Cuff Repair With Bioabsorbable Screws: An In Vivo and Ex Vivo Investigation
,”
Arthroscopy
,
19
, pp.
239
248
.10.1053/jars.2003.50013
14.
Lee
,
S.
,
Mahar
,
A.
,
Bynum
,
K.
,
Pedowitz
,
R.
,
2005
, “
Biomechanical Comparison of Bioabsorbable Sutureless Screw Anchor Versus Suture Anchor Fixation for Rotator Cuff Repair
,”
Arthroscopy
,
21
(
1
), pp.
43
47
.10.1016/j.arthro.2004.09.020
15.
Gorodia
,
V. K.
,
Mullen
,
D. J.
,
Boucher
,
H. R.
,
Parks
,
B. G.
,
O'Donnell
,
J. B
,
2001
, “
Cyclic Loading of Rotator Cuff Repairs: A Comparison of Bioabsorbable Tacks With Metal Suture Anchors and Transosseous Sutures
,”
Arthroscopy
, 17(4), pp.
360
364
.10.1053/jars.2001.21243
16.
Wieser
,
K.
,
Farshad
,
M.
,
Vlachopoulos
,
L.
,
Ruffieux
,
K.
,
Gerber
,
C.
, and
Meyer
,
D. C.
,
2012
, “
Suture Slippage in Knotless Suture Anchors as a Potential Failure Mechanism in Rotator Cuff Repair
,”
Arthroscopy
,
28
(
11
), pp.
1622
1627
.10.1016/j.arthro.2012.04.150
17.
Barber
,
F. A.
, and
Herbert
,
M. A.
,
2013
, “
Cyclic Loading Biomechanical Analysis of the Pullout Strengths of Rotator Cuff and Glenoid Anchors: 2013 Update
,”
Arthroscopy
,
29
(
5
), pp.
832
844
.10.1016/j.arthro.2013.01.028
18.
Visscher
,
L. E.
,
Jeffery
,
C.
,
Gilmour
,
T.
,
Anderson
,
L.
, and
Couzens
,
G.
,
2019
, “
The History of Suture Anchors in Orthopaedic Surgery
,”
Clin. Biomech.
,
61
, pp.
70
78
.10.1016/j.clinbiomech.2018.11.008
19.
Lädermann
,
A.
,
Denard
,
P. J.
,
Burkhart
,
S. S.
,
2016
, “
Management of Failed Rotator Cuff Repair: A Systematic Review
,”
J. ISAKOS
,
1
(
1
), pp.
32
37
.10.1136/jisakos-2015-000027
20.
Itoi
,
E.
,
Berglund
,
L. J.
,
Grabowski
,
J. J.
,
Schultz
,
F. M.
,
Growney
,
E. S.
,
Morrey
,
B. F.
,
An
,
K.-N.
,
1995
, “
Tensile Properties of the Supraspinatus Tendon
,”
J. Orthop. Res.
,
13
, pp.
578
584
.10.1002/jor.1100130413
21.
Mantovani
,
M.
,
Pellegrini
,
A.
,
Garofalo
,
P.
,
Baudi
,
P.
,
2016
, “
A 3D Finite Element Model for Geometrical and Mechanical Comparison of Different Supraspinatus Repair Techniques
,”
J. Shoulder Elbow Surg.
,
25
(
4
), pp.
557
563
.10.1016/j.jse.2015.09.002
22.
ASTM
,
2015
, “Standard Specification and Test Methods for Metallic Bone Staples,”
ASTM International
, West Conshohocken, PA, Standard No.
F564-10
. 10.1520/F0564-10R15
23.
ASTM
,
2016
, “Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments,”
ASTM International
, West Conshohocken, PA, Standard No.
F1839-08
. https://www.stdlink.com/standards/astm-f1839-08-2016.html
24.
Cruz
,
C. D.
,
2013
, “
GENES—Software para análise de dados em estatística experimental e em genética quantitativa
,”
Acta Sci. Agron.
,
35
(
3
), pp.
271
276
.
25.
Barber
,
F. A.
,
Hapa
,
O.
,
Bynum
,
J. A.
,
2010
, “
Comparative Testing by Cyclic Loading of Rotator Cuff Suture Anchors Containing Multiple High-Strength Sutures
,”
Arthroscopy
,
26
(
9 Suppl. 1
), pp.
S134
S141
.10.1016/j.arthro.2010.03.007
26.
Meisel
,
A. F.
,
Henninger
,
H. B.
,
Barber
,
F. A.
,
Getelman
,
M. H.
,
2017
, “
Biomechanical Comparison of Standard and Linked Single-Row Rotator Cuff Repairs in a Human Cadaver Model
,”
Arthroscopy
,
33
(
5
), pp.
938
944
.10.1016/j.arthro.2016.10.014
27.
Poukalova
,
M.
,
Yakacki
,
C. M.
,
Guldberg
,
R. E.
,
Lin
,
A.
,
Saing
,
M.
,
Gillogly
,
S. D.
,
2010
, “
Pullout Strength of Suture Anchors: Effect of Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
43
(
6
), pp.
1138
1145
.10.1016/j.jbiomech.2009.12.007
28.
Tingart
,
M. J.
,
Apreleva
,
M.
,
Lehtinen
,
J.
,
Zurakowski
,
D.
,
Warner
,
J. J. P.
,
2004
, “
Anchor Design and Bone Mineral Density Affect the Pull-Out Strength of Suture Anchors in Rotator Cuff Repair: Which Anchors are Best to Use in Patients With Low Bone Quality
?,”
Am. J. Sports Med.
,
232
(
6
), pp.
1466
1473
.10.1177/0363546503262644
29.
Barber
,
F. A.
,
Coons
,
D. A.
,
Ruiz-Suarez
,
M.
,
2007
, “
Cyclic Load Testing of Biodegradable Suture Anchors Containing 2 High-Strength Sutures
,”
Arthroscopy
,
23
(
4
), pp.
355
360
.10.1016/j.arthro.2006.12.009
30.
Nagra
,
N. S.
,
Zargar
,
N.
,
Smith
,
R. D. J.
,
Carr
,
A. J.
,
2017
, “
Mechanical Properties of All-Suture Anchors for Rotator Cuff Repair
,”
Bone Jt. Res.
,
6
(
2
), pp.
82
89
.10.1302/2046-3758.62.BJR-2016-0225.R1
31.
Braunstein
,
V.
,
Ockert
,
B.
,
Windolf
,
M.
,
Sprecher
,
C. M.
,
Mutschler
,
W.
,
Imhoff
,
A.
,
2015
, “
Increasing Pullout Strength of Suture Anchors in Osteoporotic Bone Using Augmentation—A Cadaver Study
,”
Clin. Biomech.
,
30
(
3
), pp.
243
247
.10.1016/j.clinbiomech.2015.02.002
32.
Green
,
R. N.
,
Donaldson
,
O. W.
,
Dafydd
,
M.
,
Evans
,
S. L.
,
Kulkarni
,
R.
,
2014
, “
Biomechanical Study: Determining the Optimum Insertion Angle for Screw-In Suture Anchors—Is Deadman's Angle Correct?
,”
Arthroscopy
,
30
(
12
), pp.
1535
1539
.10.1016/j.arthro.2014.07.010
You do not currently have access to this content.