Abstract

Pedestrians are one of the most vulnerable road users. In 2019, the USA reported the highest number of pedestrian fatalities number in nearly three decades. To better protect pedestrians in car-to-pedestrian collisions (CPC), pedestrian biomechanics must be better investigated. The pre-impact conditions of CPCs vary significantly in terms of the characteristics of vehicles (e.g., front-end geometry, stiffness, etc.) and pedestrians (e.g., anthropometry, posture, etc.). The influence of pedestrian gait posture has not been well analyzed. The purpose of this study was to numerically investigate the changes in pedestrian kinematics and injuries across various gait postures in two different vehicle impacts. Five finite element (FE) human body models, that represent the 50th percentile male in gait cycle, were developed and used to perform CPC simulations with two generic vehicle FE models representing a low-profile vehicle and a high-profile vehicle. In the impacts with the high-profile vehicle, a sport utility vehicle, the pedestrian models usually slide above the bonnet leading edge and report shorter wrap around distances than in the impacts with a low-profile vehicle, a family car/sedan (FCR). The pedestrian postures influenced the postimpact rotation of the pedestrian and consequently, the impacted head region. Pedestrian posture also influenced the risk of injuries in the lower and upper extremities. Higher bone bending moments were observed in the stance phase posture compared to the swing phase. The findings of this study should be taken into consideration when examining pedestrian protection protocols. In addition, the results of this study can be used to improve the design of active safety systems used to protect pedestrians in collisions.

References

1.
WHO
,
2018
, “
Global Status Report on Road Safety
,” World Health Organization (WHO), Geneva, Switzerland, accessed May 29, 2021, https://www.who.int/violence_injury_prevention/road_safety_status/2018/English-Summary-GSRRS2018.pdf
2.
GHSA
,
2021
, “
Pedestrian Traffic Fatalities by State, 2020 Preliminary Data
,” Guvernors Highway Safety Association (GHSA), Washington, DC, accessed May 29, 2021, https://www.ghsa.org/sites/default/files/2021-03/Ped%20 Spotlight%202021%20FINAL%203.23.21.pdf
3.
Watanabe
,
R.
,
Katsuhara
,
T.
,
Miyazaki
,
H.
,
Kitagawa
,
Y.
, and
Yasuki
,
T.
,
2012
, “
Research of the Relationship of Pedestrian Injury to Collision Speed, Car-Type, Impact Location and Pedestrian Sizes Using Human FE Model (THUMS Version 4)
,”
Stapp Car Crash J.
,
56
, pp.
269
321
.10.4271/2012-22-0007
4.
NHTSA
,
2019
, “
Traffic Safety Facts (2017 Data)
,” National Highway Traffic Safety Administration, Washington, DC, accessed May 29, 2021, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812681
5.
Crandall
,
J. R.
,
Bhalla
,
K. S.
, and
Madeley
,
N.
,
2002
, “
Designing Road Vehicles for Pedestrian Protection
,”
BMJ
,
324
(
7346
), pp.
1145
1148
.10.1136/bmj.324.7346.1145
6.
Yun
,
Y.-W.
,
Lee
,
J.-W.
,
Kim
,
G.-H.
, and
Gyung-Jin
,
P.
,
2013
, “
Pedestrian Protection Test and Results: Utilization for Regulations in Korea
,” Proceedings of 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV), National Highway Traffic Safety Administration, Seoul, Korea, May 27–30, Paper No.
13-0357
..https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812681
7.
Kleiven
,
S.
,
2003
, “
Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma
,”
J. Neurotrauma
,
20
(
4
), pp.
365
379
.10.1089/089771503765172327
8.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2001
, “
Comparison of Brain Responses Between Frontal and Lateral Impacts by Finite Element Modeling
,”
J. Neurotrauma
,
18
(
1
), pp.
21
30
.10.1089/089771501750055749
9.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
10.
Untaroiu
,
C. D.
,
Shin
,
J.
,
Crandall
,
J. R.
,
Fredriksson
,
R.
,
Bostrom
,
O.
,
Takahashi
,
Y.
,
Akiyama
,
A.
,
Okamoto
,
M.
, and
Kikuchi
,
Y.
,
2010
, “
Development and Validation of Pedestrian Sedan Bucks Using Finite-Element Simulations: A Numerical Investigation of the Influence of Vehicle Automatic Braking on the Kinematics of the Pedestrian Involved in Vehicle Collisions
,”
Int. J. Crashworthiness
,
15
(
5
), pp.
491
503
.10.1080/13588265.2010.484189
11.
Fredriksson
,
R.
,
Shin
,
J.
, and
Untaroiu
,
C. D.
,
2011
, “
Potential of Pedestrian Protection Systems-A Parameter Study Using Finite Element Models of Pedestrian Dummy and Generic Passenger Vehicles
,”
Traffic Injury Prev.
,
12
(
4
), pp.
398
411
.10.1080/15389588.2011.566655
12.
Untaroiu
,
C. D.
,
Shin
,
J.
, and
Lu
,
-C.
,
2013
, “
Assessment of a Dummy Model in Crash Simulations Using Rating Methods
,”
Int. J. Automot. Technol.
,
14
(
3
), pp.
395
405
.10.1007/s12239-013-0043-x
13.
Li
,
G.
,
Yang
,
J.
, and
Simms
,
C.
,
2015
, “
The Influence of Gait Stance on Pedestrian Lower Limb Injury Risk
,”
Acc. Anal. Prev.
,
85
, pp.
83
92
.10.1016/j.aap.2015.07.012
14.
Chen
,
H.
,
Poulard
,
D.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2015
, “
Pedestrian Response With Different Initial Positions During Impact With a Mid-Sized Sedan
,”
Proceedings of the 24th International Technical Conference on the Enhanced Safety of Vehicles, Gothenburg
, Sweden, June 8–11, Paper No. 15-0391-O. https://www-esv.nhtsa.dot.gov/Proceedings/24/files/24ESV-000391.PDF
15.
Chen
,
H.
,
Crandall
,
J.
, and
Panzer
,
M.
,
2020
, “
Evaluating Pedestrian Head Sub-System Test Procedure Against Full-Scale Vehicle-Pedestrian Impact
,”
Int. J. Crashworthiness
, epub.10.1080/13588265.2020.1726853
16.
Fredriksson
,
R.
,
Rosén
,
E.
, and
Kullgren
,
A.
,
2010
, “
Priorities of Pedestrian Protection—a Real-Life Study of Severe Injuries and Car Sources
,”
Acc. Anal. Prev.
,
42
(
6
), pp.
1672
1681
. 10.1016/j.aap.2010.04.006
17.
Untaroiu
,
C. D.
,
Pak
,
W.
,
Meng
,
Y.
,
Schap
,
J.
,
Koya
,
B.
, and
Gayzik
,
S.
,
2018
, “
A Finite Element Model of a Midsize Male for Simulating Pedestrian Accidents
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011003
.10.1115/1.4037854
18.
EuroNCAP
,
2017
, “
Pedestrian CAE Models v1.5
,” Euro NCAP, Leuven, Belgium, accessed May 29, 2021, https://cdn.euroncap.com/media/21510/tb-013-pedestrian-cae-models-v15.pdf
19.
EuroNCAP
,
2018
, “
Pedestrian Testing Protocol v8.5
,” Euro NCAP, Leuven, Belgium, accessed May 29, 2021, https://cdn.euroncap.com/media/41769/euro-ncap-pedestrian-testing-protocol-v85.201811091256001913.pdf
20.
Novacheck
,
T. F.
,
1998
, “
The Biomechanics of Running
,”
Gait Posture
,
7
(
1
), pp.
77
95
.10.1016/S0966-6362(97)00038-6
21.
Untaroiu
,
C. D.
,
Meissner
,
M. U.
,
Crandall
,
J. R.
,
Takahashi
,
Y.
,
Okamoto
,
M.
, and
Ito
,
O.
,
2009
, “
Crash Reconstruction of Pedestrian Accidents Using Optimization Techniques
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
210
219
.10.1016/j.ijimpeng.2008.01.012
22.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
23.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
24.
Janak
,
T.
,
Lafon
,
Y.
,
Petit
,
P.
, and
Beillas
,
P.
,
2018
, “
Transformation Smoothing to Use After Positioning of Finite Element Human Body Models
,” Proceedings of IRCOBI Conference: International Research Council on the Biomechanics of Injury, IRCOBI, Athens, Greece, Sept. 12–14, Paper No.
IRC-18-33
. http://www.ircobi.org/wordpress/downloads/irc18/pdf-files/33.pdf
25.
Klug
,
C.
,
Feist
,
F.
,
Raffler
,
M.
,
Sinz
,
W.
,
Petit
,
P.
,
Ellway
,
J.
, and
van Ratingen
,
M.
,
2017
, “
Development of a Procedure to Compare Kinematics of Human Body Models for Pedestrian Simulations
,” Proceedings of IRCOBI Conference: International Research Council on the Biomechanics of Injury, IRCOBI, Antwerp, Belgium, Sept. 13–15, Paper No.
IRC-17-64
. https://cdn.euroncap.com/media/53192/development-of-a-procedure-to-compare-kinematics-of-human-body-models-for-pedestrian-klug.pdf
26.
Chidester
,
A.
, and
Isenberg
,
R.
,
2001
, “
Final Report–The Pedestrian Crash Data Study
,” National Highway Traffic Safety Administration, Washington, DC, Report No. 248.https://www-nrd.nhtsa.dot.gov/pdf/esv/esv17/proceed/00105.pdf
27.
Untaroiu
,
C.
,
Kerrigan
,
J.
,
Kam
,
C.
,
Crandall
,
J.
,
Yamazaki
,
K.
,
Fukuyama
,
K.
,
Kamiji
,
K.
,
Yasuki
,
T.
, and
Funk
,
J.
,
2007
, “
Correlation of Strain and Loads Measured in the Long Bones With Observed Kinematics of the Lower Limb During Vehicle-Pedestrian Impacts
,”
Stapp Car Crash J.
,
51
, pp.
433
–4
66
.https://pubmed.ncbi.nlm.nih.gov/18278607/
28.
Chen
,
H.
,
Fu
,
L.
, and
Zheng
,
H.
,
2009
, “
A Comparative Study Between China and IHRA for the Vehicle-Pedestrian Impact
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
2
(
1
), pp.
1108
1115.
10.4271/2009-01-1205
29.
Mizuno
,
Y.
,
2005
, “
Summary of IHRA Pedestrian Safety WG Activities (2005)-Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars
,” Proceedings of 19th International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC, June 6–9, Paper No.
05-0138-O
. https://trid.trb.org/view/811072
30.
Engineering ToolBox
, 2004, "Friction and Friction Coefficients," Engineering ToolBox, accessed May 29, 2021, https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
31.
Kothari
,
V.
, and
Gangal
,
M.
,
1994
, “
Assessment of Frictional Properties of Some Woven Fabrics
,”
Indian J. Fibre Text. Res.
, 19(9), pp.
151
155
.http://nopr.niscair.res.in/handle/123456789/19305
32.
LSTC
,
2017
, “
LS-Dyna Keyword User's Manual Volume 1
,” Livermore Software Technology Corporation (LSTC), Livermore, CA.http://lstc.com/pdf/ls-dyna_971_manual_k.pdf
33.
Kerrigan
,
J. R.
,
Drinkwater
,
D.
,
Kam
,
C.
,
Murphy
,
D.
,
Ivarsson
,
B.
,
Crandall
,
J.
, and
Patrie
,
J.
,
2004
, “
Tolerance of the Human Leg and Thigh in Dynamic Latero-Medial Bending
,”
Int. J. Crashworthiness
,
9
(
6
), pp.
607
623
.10.1533/ijcr.2004.0315
34.
Bose
,
D.
,
Bhalla
,
K.
,
Untaroiu
,
C.
,
Ivarsson
,
B.
,
Crandall
,
J.
, and
Hurwitz
,
S.
,
2008
, “
Injury Tolerance and Moment Response of the Knee Joint to Combined Valgus Bending and Shear Loading
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031008
.10.1115/1.2907767
35.
Mo
,
F.
,
Arnoux
,
P. J.
,
Cesari
,
D.
, and
Masson
,
C.
,
2014
, “
Investigation of the Injury Threshold of Knee Ligaments by the Parametric Study of Car–Pedestrian Impactconditions
,”
Saf. Sci.
,
62
, pp.
58
67
.10.1016/j.ssci.2013.07.024
36.
Mertz
,
H.
,
1984
, “
A Procedure for Normalizing Impact Response Data
,”
SAE
Technical Paper No. 840884.10.4271/840884
37.
Kemper
,
A.
,
Stitzel
,
J.
,
Gabler
,
C.
,
Duma
,
S.
, and
Matsuoka
,
F.
,
2006
, “
Biomechanical Response of the Human Clavicle Subjected to Dynamic Bending
,”
Biomed. Sci. Instrum.
,
42
, pp.
231
236
.https://pubmed.ncbi.nlm.nih.gov/16817613/
38.
Tarriere
,
C.
,
Walfisch
,
G.
,
Fayon
,
A.
, Got, C., and Guillon, F., 1979, “
Synthesis of Human Tolerances Obtained From Lateral Impact Simulations
,”
Proceedings of Seventh International Technical Conference on Experimental Safety Vehicles
, Paris, France, June 5–8, pp.
359
373
. https://www.semanticscholar.org/paper/Synthesis-of-human-tolerances-obtained-from-lateral-Tarri%C3%A8re-Walfisch/c9ab49a05908a053b7053060572631299a01106d
39.
Otte
,
D.
,
2015
, “
Wrap Around Distance WAD of Pedestrian and Bicyclists and Relevance as Influence Parameter for Head Injuries
,”
SAE
Technical Paper No. 2015-01-1461.10.4271/2015-01-1461
40.
Kerrigan
,
J. R.
,
Crandall
,
J. R.
, and
Deng
,
B.
,
2007
, “
Pedestrian Kinematic Response to Mid-Sized Vehicle Impact
,”
Int. J. Veh. Safety
,
2
(
3
), pp.
221
240
.10.1504/IJVS.2007.015541
41.
Elliott
,
J. R.
,
Simms
,
C. K.
, and
Wood
,
D. P.
,
2012
, “
Pedestrian Head Translation, Rotation and Impact Velocity: The Influence of Vehicle Speed, Pedestrian Speed and Pedestrian Gait
,”
Accid. Anal. Prev.
,
45
, pp.
342
353
.10.1016/j.aap.2011.07.022
42.
Mallory
,
A.
,
Fredriksson
,
R.
,
Rosén
,
E.
, and
Donnelly
,
B.
,
2012
, “
Pedestrian Injuries by Source: Serious and Disabling Injuries in U.S. and European Cases
,”
Ann. Adv. Automot. Med.
, 56, pp.
13
24
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503427/
43.
Shi
,
L.
,
Han
,
Y.
,
Huang
,
H.
,
Li
,
Q.
,
Wang
,
B.
, and
Mizuno
,
K.
,
2018
, “
Analysis of Pedestrian-to-Ground Impact Injury Risk in Vehicle-to-Pedestrian Collisions Based on Rotation Angles
,”
J. Saf. Res.
,
64
, pp.
37
47
.10.1016/j.jsr.2017.12.004
44.
Pak
,
W.
,
Meng
,
Y.
,
Schap
,
J.
,
Koya
,
B.
,
Gayzik
,
F. S.
, and
Untaroiu
,
C. D.
,
2020
, “
Development and Validation of a Finite Element Model of a Small Female Pedestrian
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
16
), pp.
1336
1346
.10.1080/10255842.2020.1801652
45.
Pak
,
W.
,
Meng
,
Y. Z.
,
Schap
,
J.
,
Koya
,
B.
,
Gayzik
,
S. F.
, and
Untaroiu
,
C. D.
,
2019
, “
Finite Element Model of a High-Stature Male Pedestrian for Simulating Car-to-Pedestrian Collisions
,”
Int. J. Automot. Technol.
,
20
(
3
), pp.
445
453
.10.1007/s12239-019-0042-7
46.
Chawla
,
A.
,
Mukherjee
,
S.
,
Soni
,
A.
, and
Malhotra
,
R.
,
2008
, “
Effect of Active Muscle Forces on Knee Injury Risks for Pedestrian Standing Posture at Low-Speed Impacts
,”
Traffic Injury Prev.
,
9
(
6
), pp.
544
551
.10.1080/15389580802338228
47.
Alvarez
,
V. S.
,
Halldin
,
P.
, and
Kleiven
,
S.
,
2014
, “
The Influence of Neck Muscle Tonus and Posture on Brain Tissue Strain in Pedestrian Head Impacts
,”
Stapp Car Crash J.
,
58
, pp.
63
101
.10.4271/2014-22-0003
48.
Grindle
,
D.
,
Pak
,
W.
,
Guleyupoglu
,
B.
,
Koya
,
B.
,
Gayzik
,
F. S.
,
Song
,
E.
, and
Untaroiu
,
C.
,
2021
, “
A Detailed Finite Element Model of a Mid-Sized Male for the Investigation of Traffic Pedestrian Accidents
,”
Proc. Inst. Mech. Eng. H
,
235
(
3
), pp.
300
313
.10.1177/0954411920976223
49.
Timmel
,
M.
,
Kolling
,
S.
,
Osterrieder
,
P.
, and
Du Bois
,
P. A.
,
2007
, “
A Finite Element Model for Impact Simulation With Laminated Glass
,”
Int. J. Impact Eng.
,
34
(
8
), pp.
1465
1478
.10.1016/j.ijimpeng.2006.07.008
50.
Peng
,
Y.
,
Yang
,
J. K.
,
Deck
,
C.
, and
Willinger
,
R.
,
2013
, “
Finite Element Modeling of Crash Test Behavior for Windshield Laminated Glass
,”
Int. J. Impact Eng.
,
57
, pp.
27
35
.10.1016/j.ijimpeng.2013.01.010
51.
Alvarez
,
V. S.
, and
Kleiven
,
S.
, 2016, “
Importance of Windscreen Modelling Approach for Head Injury Prediction
,”
Proceedings of IRCOBI Conference: International Research Council on the Biomechanics of Injury, IRCOBI
, Malaga, Spain, Sept. 14–16, Paper No. IRC-16-100.http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/100.pdf
52.
Adam
,
T.
, and
Untaroiu
,
C. D.
,
2011
, “
Identification of Occupant Posture Using a Bayesian Classification Methodology to Reduce the Risk of Injury in a Collision
,”
Transp. Res. Part C Emerg. Technol.
,
19
(
6
), pp.
1078
1094
.10.1016/j.trc.2011.06.006
53.
Untaroiu
,
C. D.
, and
Adam
,
T. J.
,
Performance-Based Classification of Occupant Posture to Reduce the Risk of Injury in a Collision
,”
IEEE Trans. Intel. Trans. Sys.
,
14
(
2
), pp.
565
573
.10.1109/TITS.2012.2223687
You do not currently have access to this content.