Abstract

The field of tissue engineering has been continuously evolving since its inception over three decades ago with numerous new advancements in biomaterials and cell sources and widening applications to most tissues in the body. Despite the substantial promise and great opportunities for the advancement of current medical therapies and procedures, the field has yet to capture wide clinical translation due to some remaining challenges, including oxygen availability within constructs, both in vitro and in vivo. While this insufficiency of nutrients, specifically oxygen, is a limitation within the current frameworks of this field, the literature shows promise in new technological advances to efficiently provide adequate delivery of nutrients to cells. This review attempts to capture the most recent advances in the field of oxygen transport in hydrogel-based tissue engineering, including a comparison of current research as it pertains to the modeling, sensing, and optimization of oxygen within hydrogel constructs as well as new technological innovations to overcome traditional diffusion-based limitations. The application of these findings can further the advancement and development of better hydrogel-based tissue engineered constructs for future clinical translation and adoption.

References

1.
Park
,
K. M.
,
Shin
,
Y. M.
,
Kim
,
K.
, and
Shin
,
H.
,
2018
, “
Tissue Engineering and Regenerative Medicine 2017: A Year in Review
,”
Tissue Eng. Part B Rev.
,
24
(
5
), pp.
327
344
.10.1089/ten.teb.2018.0027
2.
Kopecek
,
J.
,
2007
, “
Hydrogel Biomaterials: A Smart Future?
,”
Biomaterials
,
28
(
34
), pp.
5185
5192
.10.1016/j.biomaterials.2007.07.044
3.
Takei
,
T.
,
Sakai
,
S.
, and
Yoshida
,
M.
,
2016
, “
In vitro Formation of Vascular-Like Networks Using Hydrogels
,”
J. Biosci. Bioeng.
,
122
(
5
), pp.
519
527
.10.1016/j.jbiosc.2016.03.023
4.
Mas-Bargues
,
C.
,
Sanz-Ros
,
J.
,
Román-Domínguez
,
A.
,
Inglés
,
M.
,
Gimeno-Mallench
,
L.
,
El Alami
,
M.
,
Viña-Almunia
,
J.
,
Gambini
,
J.
,
Viña
,
J.
, and
Borrás
,
C.
,
2019
, “
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine
,”
Int. J. Mol. Sci.
,
20
(
5
), p.
1195
.10.3390/ijms20051195
5.
Place
,
T. L.
,
Domann
,
F. E.
, and
Case
,
A. J.
,
2017
, “
Limitations of Oxygen Delivery to Cells in Culture: An Underappreciated Problem in Basic and Translational Research
,”
Free Rad. Biol. Med.
,
113
, pp.
311
322
.10.1016/j.freeradbiomed.2017.10.003
6.
Hurtado
,
D. E.
,
Castro
,
S.
, and
Gizzi
,
A.
,
2016
, “
Computational Modeling of Non-Linear Diffusion in Cardiac Electrophysiology: A Novel Porous-Medium Approach
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
70
83
.10.1016/j.cma.2015.11.014
7.
Vazquez
,
J. L.
,
2007
, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, UK.
8.
Lin
,
C. C.
, and
Metters
,
A. T.
,
2006
, “
Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling
,”
Adv. Drug Deliv. Rev.
,
58
(
12–13
), pp.
1379
1408
.10.1016/j.addr.2006.09.004
9.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Clarendon Press
, Oxford, UK.
10.
Cherubini
,
C.
,
Filippi
,
S.
,
Gizzi
,
A.
, and
Ruiz-Baier
,
R.
,
2017
, “
A Note on Stress-Driven Anisotropic Diffusion and Its Role in Active Deformable Media
,”
J. Theor. Biol.
,
430
, pp.
221
228
.10.1016/j.jtbi.2017.07.013
11.
Brown
,
D. A.
,
MacLellan
,
W. R.
,
Laks
,
H.
,
Dunn
,
J. C.
,
Wu
,
B. M.
, and
Beygui
,
R. E.
,
2007
, “
Analysis of Oxygen Transport in a Diffusion-Limited Model of Engineered Heart Tissue
,”
Biotechnol. Bioeng.
,
97
(
4
), pp.
962
975
.10.1002/bit.21295
12.
Axpe
,
E.
,
Chan
,
D.
,
Offeddu
,
G. S.
,
Chang
,
Y.
,
Merida
,
D.
,
Hernandez
,
H. L.
, and
Appel
,
E. A.
,
2019
, “
A Multiscale Model for Solute Diffusion in Hydrogels
,”
Macromolecules
,
52
(
18
), pp.
6889
6897
.10.1021/acs.macromol.9b00753
13.
Malda
,
J.
,
Rouwkema
,
J.
,
Martens
,
D. E.
,
Le Comte
,
E. P.
,
Kooy
,
F. K.
,
Tramper
,
J.
,
van Blitterswijk
,
C. A.
, and
Riesle
,
J.
,
2004
, “
Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling
,”
Biotechnol. Bioeng.
,
86
(
1
), pp.
9
18
.10.1002/bit.20038
14.
Malda
,
J.
,
Woodfield
,
T. B.
,
van der Vloodt
,
F.
,
Kooy
,
F. K.
,
Martens
,
D. E.
,
Tramper
,
J.
,
van Blitterswijk
,
C. A.
, and
Riesle
,
J.
,
2004
, “
The Effect of PEGT/PBT Scaffold Architecture on Oxygen Gradients in Tissue Engineered Cartilaginous Constructs
,”
Biomaterials
,
25
(
26
), pp.
5773
5780
.10.1016/j.biomaterials.2004.01.028
15.
Demol
,
J.
,
Lambrechts
,
D.
,
Geris
,
L.
,
Schrooten
,
J.
, and
Van Oosterwyck
,
H.
,
2011
, “
Towards a Quantitative Understanding of Oxygen Tension and Cell Density Evolution in Fibrin Hydrogels
,”
Biomaterials
,
32
(
1
), pp.
107
118
.10.1016/j.biomaterials.2010.08.093
16.
Magliaro
,
C.
,
Mattei
,
G.
,
Iacoangeli
,
F.
,
Corti
,
A.
,
Piemonte
,
V.
, and
Ahluwalia
,
A.
,
2019
, “
Oxygen Consumption Characteristics in 3D Constructs Depend on Cell Density
,”
Front Bioeng. Biotechnol.
,
7
, p.
251
.10.3389/fbioe.2019.00251
17.
Lambrechts
,
D.
,
Roeffaers
,
M.
,
Kerckhofs
,
G.
,
Hofkens
,
J.
,
Van de Putte
,
T.
,
Schrooten
,
J.
, and
Van Oosterwyck
,
H.
,
2014
, “
Reporter Cell Activity Within Hydrogel Constructs Quantified From Oxygen-Independent Bioluminescence
,”
Biomaterials
,
35
(
28
), pp.
8065
8077
.10.1016/j.biomaterials.2014.06.002
18.
Sengers
,
B. G.
,
van Donkelaar
,
C. C.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
,
2008
, “
Computational Study of Culture Conditions and Nutrient Supply in Cartilage Tissue Engineering
,”
Biotechnol. Prog.
,
21
(
4
), pp.
1252
1261
.10.1021/bp0500157
19.
Sengers
,
B. G.
,
Heywood
,
H. K.
,
Lee
,
D. A.
,
Oomens
,
C. W.
, and
Bader
,
D. L.
,
2005
, “
Nutrient Utilization by Bovine Articular Chondrocytes: A Combined Experimental and Theoretical Approach
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
758
766
.10.1115/1.1993664
20.
Radisic
,
M.
,
Deen
,
W.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
,
2005
, “
Mathematical Model of Oxygen Distribution in Engineered Cardiac Tissue With Parallel Channel Array Perfused With Culture Medium Containing Oxygen Carriers
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
3
), pp.
H1278
1289
.10.1152/ajpheart.00787.2004
21.
Iyer
,
R. K.
,
Radisic
,
M.
,
Cannizzaro
,
C.
, and
Vunjak-Novakovic
,
G.
,
2007
, “
Synthetic Oxygen Carriers in Cardiac Tissue Engineering
,”
Artif. Cells Blood Substit. Immobil. Biotechnol.
,
35
(
1
), pp.
135
148
.10.1080/10731190600974988
22.
Williams
,
K. A.
,
Saini
,
S.
, and
Wick
,
T. M.
,
2002
, “
Computational Fluid Dynamics Modeling of Steady-State Momentum and Mass Transport in a Bioreactor for Cartilage Tissue Engineering
,”
Biotechnol. Prog.
,
18
(
5
), pp.
951
963
.10.1021/bp020087n
23.
Yan
,
X.
,
Bergstrom
,
D. J.
, and
Chen
,
X. B.
,
2012
, “
Modeling of Cell Cultures in Perfusion Bioreactors
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2568
2575
.10.1109/TBME.2012.2206077
24.
Pierre
,
J.
,
Gemmiti
,
C. V.
,
Kolambkar
,
Y. M.
,
Oddou
,
C.
, and
Guldberg
,
R. E.
,
2008
, “
Theoretical Analysis of Engineered Cartilage Oxygenation: Influence of Construct Thickness and Media Flow Rate
,”
Biomech. Model. Mechanobiol.
,
7
(
6
), pp.
497
510
.10.1007/s10237-007-0107-9
25.
Lewis
,
M. C.
,
Macarthur
,
B. D.
,
Malda
,
J.
,
Pettet
,
G.
, and
Please
,
C. P.
,
2005
, “
Heterogeneous Proliferation Within Engineered Cartilaginous Tissue: The Role of Oxygen Tension
,”
Biotechnol. Bioeng.
,
91
(
5
), pp.
607
615
.10.1002/bit.20508
26.
Martin
,
I.
,
Wendt
,
D.
, and
Heberer
,
M.
,
2004
, “
The Role of Bioreactors in Tissue Engineering
,”
Trends Biotechnol.
,
22
(
2
), pp.
80
86
.10.1016/j.tibtech.2003.12.001
27.
Chung
,
C. A.
,
Chen
,
C. W.
,
Chen
,
C. P.
, and
Tseng
,
C. S.
,
2007
, “
Enhancement of Cell Growth in Tissue-Engineering Constructs Under Direct Perfusion: Modeling and Simulation
,”
Biotechnol. Bioeng.
,
97
(
6
), pp.
1603
1616
.10.1002/bit.21378
28.
Croll
,
T. I.
,
Gentz
,
S.
,
Mueller
,
K.
,
Davidson
,
M.
,
O'Connor
,
A. J.
,
Stevens
,
G. W.
, and
Cooper-White
,
J. J.
,
2005
, “
Modelling Oxygen Diffusion and Cell Growth in a Porous, Vascularising Scaffold for Soft Tissue Engineering Applications
,”
Chem. Eng. Sci.
,
60
(
17
), pp.
4924
4934
.10.1016/j.ces.2005.03.051
29.
Lucantonio
,
A.
,
Nardinocchi
,
P.
, and
Pezzulla
,
M.
,
2014
, “
Swelling-Induced and Controlled Curving in Layered Gel Beams
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
470
(
2171
), p.
20140467
.10.1098/rspa.2014.0467
30.
Lucantonio
,
A.
,
Teresi
,
L.
, and
DeSimone
,
A.
,
2016
, “
Continuum Theory of Swelling Material Surfaces With Applications to Thermo-Responsive Gel Membranes and Surface Mass Transport
,”
J. Mech. Phys. Solids
,
89
, pp.
96
109
.10.1016/j.jmps.2016.02.001
31.
Lucantonio
,
A.
,
Nardinocchi
,
P.
, and
Teresi
,
L.
,
2013
, “
Transient Analysis of Swelling-Induced Large Deformations in Polymer Gels
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
205
218
.10.1016/j.jmps.2012.07.010
32.
Giannitelli
,
S. M.
,
Accoto
,
D.
,
Trombetta
,
M.
, and
Rainer
,
A.
,
2014
, “
Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering
,”
Acta Biomater.
,
10
(
2
), pp.
580
594
.10.1016/j.actbio.2013.10.024
33.
Gizzi
,
A.
,
Giannitelli
,
S. M.
,
Trombetta
,
M.
,
Cherubini
,
C.
,
Filippi
,
S.
,
De Ninno
,
A.
,
Businaro
,
L.
,
Gerardino
,
A.
, and
Rainer
,
A.
,
2017
, “
Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device
,”
Sci. Rep.
,
7
(
1
), p.
5489
.10.1038/s41598-017-05237-9
34.
Costantini
,
M.
,
Testa
,
S.
,
Mozetic
,
P.
,
Barbetta
,
A.
,
Fuoco
,
C.
,
Fornetti
,
E.
,
Tamiro
,
F.
,
Bernardini
,
S.
,
Jaroszewicz
,
J.
,
Święszkowski
,
W.
,
Trombetta
,
M.
,
Castagnoli
,
L.
,
Seliktar
,
D.
,
Garstecki
,
P.
,
Cesareni
,
G.
,
Cannata
,
S.
,
Rainer
,
A.
, and
Gargioli
,
C.
,
2017
, “
Microfluidic-Enhanced 3D Bioprinting of Aligned Myoblast-Laden Hydrogels Leads to Functionally Organized Myofibers In Vitro and In Vivo
,”
Biomaterials
,
131
, pp.
98
110
.10.1016/j.biomaterials.2017.03.026
35.
Figueiredo
,
L.
,
Pace
,
R.
,
D'Arros
,
C.
,
Rethore
,
G.
,
Guicheux
,
J.
,
Le Visage
,
C.
, and
Weiss
,
P.
,
2018
, “
Assessing Glucose and Oxygen Diffusion in Hydrogels for the Rational Design of 3D Stem Cell Scaffolds in Regenerative Medicine
,”
J. Tissue Eng. Regen. Med.
,
12
(
5
), pp.
1238
1246
.10.1002/term.2656
36.
Kellner
,
K.
,
Liebsch
,
G.
,
Klimant
,
I.
,
Wolfbeis
,
O. S.
,
Blunk
,
T.
,
Schulz
,
M. B.
, and
Göpferich
,
A.
,
2002
, “
Determination of Oxygen Gradients in Engineered Tissue Using a Fluorescent Sensor
,”
Biotechnol. Bioeng.
,
80
(
1
), pp.
73
83
.10.1002/bit.10352
37.
Bannerman
,
D.
, and
Wan
,
W.
,
2016
, “
Multifunctional Microbeads for Drug Delivery in TACE
,”
Expert Opin. Drug Deliv.
,
13
(
9
), pp.
1289
1300
.10.1080/17425247.2016.1192122
38.
Wang
,
L.
,
Acosta
,
M. A.
,
Leach
,
J. B.
, and
Carrier
,
R. L.
,
2013
, “
Spatially Monitoring Oxygen Level in 3D Microfabricated Cell Culture Systems Using Optical Oxygen Sensing Beads
,”
Lab Chip
,
13
(
8
), pp.
1586
1592
.10.1039/c3lc41366g
39.
Lesher-Perez
,
S. C.
,
Kim
,
G. A.
,
Kuo
,
C. H.
,
Leung
,
B. M.
,
Mong
,
S.
,
Kojima
,
T.
,
Moraes
,
C.
,
Thouless
,
M. D.
,
Luker
,
G. D.
, and
Takayama
,
S.
,
2017
, “
Dispersible Oxygen Microsensors Map Oxygen Gradients in Three-Dimensional Cell Cultures
,”
Biomater. Sci.
,
5
(
10
), pp.
2106
2113
.10.1039/C7BM00119C
40.
Koduri
,
M. P.
,
S. Goudar
,
V.
,
Shao
,
Y.-W.
,
Hunt
,
J. A.
,
Henstock
,
J. R.
,
Curran
,
J.
, and
Tseng
,
F. G.
,
2018
, “
Fluorescence-Based Nano-Oxygen Particles for Spatiometric Monitoring of Cell Physiological Conditions
,”
ACS Appl. Mater Interfaces
,
10
(
36
), pp.
30163
30171
.10.1021/acsami.8b10715
41.
Li
,
C.
,
Huang
,
Z.
,
Gao
,
N.
,
Zheng
,
J.
, and
Guan
,
J.
,
2019
, “
Injectable, Thermosensitive, Fast Gelation, Bioeliminable, and Oxygen Sensitive Hydrogels
,”
Mater. Sci. Eng. C, Mater. Biol. Appl.
,
99
, pp.
1191
1198
.10.1016/j.msec.2019.02.075
42.
Simmons
,
A. D.
,
Williams
,
C.
, 3rd
,
Degoix
,
A.
, and
Sikavitsas
,
V. I.
,
2017
, “
Sensing Metabolites for the Monitoring of Tissue Engineered Construct Cellularity in Perfusion Bioreactors
,”
Biosensor Bioelectron.
,
90
, pp.
443
449
.10.1016/j.bios.2016.09.094
43.
Westphal
,
I.
,
Jedelhauser
,
C.
,
Liebsch
,
G.
,
Wilhelmi
,
A.
,
Aszodi
,
A.
, and
Schieker
,
M.
,
2017
, “
Oxygen Mapping: Probing a Novel Seeding Strategy for Bone Tissue Engineering
,”
Biotechnol. Bioeng.
,
114
(
4
), pp.
894
902
.10.1002/bit.26202
44.
Tschiersch
,
H.
,
Liebsch
,
G.
,
Borisjuk
,
L.
,
Stangelmayer
,
A.
, and
Rolletschek
,
H.
,
2012
, “
An Imaging Method for Oxygen Distribution, Respiration and Photosynthesis at a Microscopic Level of Resolution
,”
New Phytol.
,
196
(
3
), pp.
926
936
.10.1111/j.1469-8137.2012.04295.x
45.
Giuntini
,
F.
,
Chauhan
,
V. M.
,
Aylott
,
J. W.
,
Rosser
,
G. A.
,
Athanasiadis
,
A.
,
Beeby
,
A.
,
MacRobert
,
A. J.
,
Brown
,
R. A.
, and
Boyle
,
R. W.
,
2014
, “
Conjugatable Water-Soluble Pt(II) and Pd(II) Porphyrin Complexes: Novel Nano- and Molecular Probes for Optical Oxygen Tension Measurement in Tissue Engineering
,”
Photochem. Photobiol. Sci.
,
13
(
7
), pp.
1039
1051
.10.1039/C4PP00026A
46.
Lee
,
A. L.
,
Gee
,
C. T.
,
Weegman
,
B. P.
,
Einstein
,
S. A.
,
Juelfs
,
A. R.
,
Ring
,
H. L.
,
Hurley
,
K. R.
,
Egger
,
S. M.
,
Swindlehurst
,
G.
,
Garwood
,
M.
,
Pomerantz
,
W. C. K.
, and
Haynes
,
C. L.
,
2017
, “
Oxygen Sensing With Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles
,”
ACS Nano
,
11
(
6
), pp.
5623
5632
.10.1021/acsnano.7b01006
47.
Carrier
,
R. L.
,
Rupnick
,
M.
,
Langer
,
R.
,
Schoen
,
F. J.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2002
, “
Effects of Oxygen on Engineered Cardiac Muscle
,”
Biotechnol. Bioeng.
,
78
(
6
), pp.
617
625
.10.1002/bit.10245
48.
Carrier
,
R. L.
,
Rupnick
,
M.
,
Langer
,
R.
,
Schoen
,
F. J.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2002
, “
Perfusion Improves TissueArchitecture of Engineered Cardiac Muscle
,”
Tissue Eng.
,
8
(
2
), pp.
175
188
.10.1089/107632702753724950
49.
Wendt
,
D.
,
Stroebel
,
S.
,
Jakob
,
M.
,
John
,
G. T.
, and
Martin
,
I.
,
2006
, “
Uniform Tissues Engineered by Seeding and Culturing Cells in 3D Scaffolds Under Perfusion at Defined Oxygen Tensions
,”
Biorheology
,
43
(
3,4
), pp.
481
488
.https://pubmed.ncbi.nlm.nih.gov/16912419/
50.
Santoro
,
R.
,
Krause
,
C.
,
Martin
,
I.
, and
Wendt
,
D.
,
2012
, “
On-Line Monitoring of Oxygen as a Non-Destructive Method to Quantify Cells in Engineered 3D Tissue Constructs
,”
J. Tissue Eng. Regen. Med.
,
6
(
9
), pp.
696
701
.10.1002/term.473
51.
Lambrechts
,
T.
,
Papantoniou
,
I.
,
Sonnaert
,
M.
,
Schrooten
,
J.
, and
Aerts
,
J. M.
,
2014
, “
Model-Based Cell Number Quantification Using Online Single-Oxygen Sensor Data for Tissue Engineering Perfusion Bioreactors
,”
Biotechnol. Bioeng.
,
111
(
10
), pp.
1982
1992
.10.1002/bit.25274
52.
Schmid
,
J.
,
Schwarz
,
S.
,
Meier-Staude
,
R.
,
Sudhop
,
S.
,
Clausen-Schaumann
,
H.
,
Schieker
,
M.
, and
Huber
,
R.
,
2018
, “
A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures
,”
Tissue Eng. Part C Methods
,
24
(
10
), pp.
585
595
.10.1089/ten.tec.2018.0204
53.
Janssen
,
F. W.
,
van Dijkhuizen-Radersma
,
R.
,
Van Oorschot
,
A.
,
Oostra
,
J.
,
de Bruijn
,
J. D.
, and
Van Blitterswijk
,
C. A.
,
2009
, “
Human Tissue-Engineered Bone Produced in Clinically Relevant Amounts Using a Semi-Automated Perfusion Bioreactor System: A Preliminary Study
,”
J. Tissue Eng. Regen. Med.
,
4
(
1
), pp.
n/a
24
.10.1002/term.197
54.
Volkmer
,
E.
,
Drosse
,
I.
,
Otto
,
S.
,
Stangelmayer
,
A.
,
Stengele
,
M.
,
Kallukalam
,
B. C.
,
Mutschler
,
W.
, and
Schieker
,
M.
,
2008
, “
Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone
,”
Tissue Eng. Part A
,
14
(
8
), pp.
1331
1340
.10.1089/ten.tea.2007.0231
55.
Yeatts
,
A. B.
,
Choquette
,
D. T.
, and
Fisher
,
J. P.
,
2013
, “
Bioreactors to Influence Stem Cell Fate: Augmentation of Mesenchymal Stem Cell Signaling Pathways Via Dynamic Culture Systems
,”
Biochim. Biophys. Acta
,
1830
(
2
), pp.
2470
2480
.10.1016/j.bbagen.2012.06.007
56.
Orcheston-Findlay
,
L.
,
Hashemi
,
A.
,
Garrill
,
A.
, and
Nock
,
V.
,
2018
, “
A Microfluidic Gradient Generator to Simulate the Oxygen Microenvironment in Cancer Cell Culture
,”
Microelectron. Eng.
,
195
, pp.
107
113
.10.1016/j.mee.2018.04.011
57.
Ayuso
,
J. M.
,
Virumbrales-Munoz
,
M.
,
McMinn
,
P. H.
,
Rehman
,
S.
,
Gomez
,
I.
,
Karim
,
M. R.
,
Trusttchel
,
R.
,
Wisinski
,
K. B.
,
Beebe
,
D. J.
, and
Skala
,
M. C.
,
2019
, “
Tumor-on-a-Chip: A Microfluidic Model to Study Cell Response to Environmental Gradients
,”
Lab Chip
,
19
(
20
), pp.
3461
3471
.10.1039/C9LC00270G
58.
Chen
,
Y. A.
,
King
,
A. D.
,
Shih
,
H. C.
,
Peng
,
C. C.
,
Wu
,
C. Y.
,
Liao
,
W. H.
, and
Tung
,
Y. C.
,
2011
, “
Generation of Oxygen Gradients in Microfluidic Devices for Cell Culture Using Spatially Confined Chemical Reactions
,”
Lab Chip
,
11
(
21
), pp.
3626
3633
.10.1039/c1lc20325h
59.
Riess
,
J. G.
,
2005
, “
Understanding the Fundamentals of Perfluorocarbons and Perfluorocarbon Emulsions Relevant to In Vivo Oxygen Delivery
,”
Artif. Cells Blood Substit. Immobil. Biotechnol.
,
33
(
1
), pp.
47
63
.10.1081/BIO-200046659
60.
Lowe
,
K. C.
,
Davey
,
M. R.
, and
Power
,
J. B.
,
1998
, “
Perfluorochemicals: Their Applications and Benefits to Cell Culture
,”
Trends Biotechnol.
,
16
(
6
), pp.
272
277
.10.1016/S0167-7799(98)01205-0
61.
Chin
,
K.
,
Khattak
,
S. F.
,
Bhatia
,
S. R.
, and
Roberts
,
S. C.
,
2008
, “
Hydrogel-Perfluorocarbon Composite Scaffold Promotes Oxygen Transport to Immobilized Cells
,”
Biotechnol. Prog.
,
24
(
2
), pp.
358
366
.10.1021/bp070160f
62.
Khattak
,
S. F.
,
Chin
,
K-S.
,
Bhatia
,
S. R.
, and
Roberts
,
S. C.
,
2007
, “
Enhancing Oxygen Tension and Cellular Function in Alginate Cell Encapsulation Devices Through the Use of Perfluorocarbons
,”
Biotechnol. Bioeng.
,
96
(
1
), pp.
156
166
.10.1002/bit.21151
63.
White
,
J. C.
,
Stoppel
,
W. L.
,
Roberts
,
S. C.
, and
Bhatia
,
S. R.
,
2013
, “
Addition of Perfluorocarbons to Alginate Hydrogels Significantly Impacts Molecular Transport and Fracture Stress
,”
J. Biomed. Mater. Res. Part A
,
101A
(
2
), pp.
438
446
.10.1002/jbm.a.34344
64.
Niu
,
H.
,
Li
,
C.
,
Guan
,
Y.
,
Dang
,
Y.
,
Li
,
X.
,
Fan
,
Z.
,
Shen
,
J.
,
Ma
,
L.
, and
Guan
,
J.
,
2020
, “
High Oxygen Preservation Hydrogels to Augment Cell Survival Under Hypoxic Condition
,”
Acta Biomater
,
105
, pp.
56
67
.10.1016/j.actbio.2020.01.017
65.
Harrison
,
B. S.
,
Eberli
,
D.
,
Lee
,
S. J.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2007
, “
Oxygen Producing Biomaterials for Tissue Regeneration
,”
Biomaterials
,
28
(
31
), pp.
4628
4634
.10.1016/j.biomaterials.2007.07.003
66.
Oh
,
S. H.
,
Ward
,
C. L.
,
Atala
,
A.
,
Yoo
,
J. J.
, and
Harrison
,
B. S.
,
2009
, “
Oxygen Generating Scaffolds for Enhancing Engineered Tissue Survival
,”
Biomaterials
,
30
(
5
), pp.
757
762
.10.1016/j.biomaterials.2008.09.065
67.
Fan
,
Z.
,
Xu
,
Z.
,
Niu
,
H.
,
Gao
,
N.
,
Guan
,
Y.
,
Li
,
C.
,
Dang
,
Y.
,
Cui
,
X.
,
Liu
,
X. L.
,
Duan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Lin
,
P.-H.
,
Ma
,
J.
, and
Guan
,
J.
,
2018
, “
An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction
,”
Sci. Rep.
,
8
(
1
), p.
1371
.10.1038/s41598-018-19906-w
68.
Camci-Unal
,
G.
,
Alemdar
,
N.
,
Annabi
,
N.
, and
Khademhosseini
,
A.
,
2013
, “
Oxygen-Releasing Biomaterials for Tissue Engineering
,”
Polym. Int.
,
62
(
6
), pp.
843
848
.10.1002/pi.4502
69.
Pedraza
,
E.
,
Coronel
,
M. M.
,
Fraker
,
C. A.
,
Ricordi
,
C.
, and
Stabler
,
C. L.
,
2012
, “
Preventing Hypoxia-Induced Cell Death in Beta Cells and Islets Via Hydrolytically Activated, Oxygen-Generating Biomaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
11
), pp.
4245
4250
.10.1073/pnas.1113560109
70.
Li
,
Z.
,
Guo
,
X.
, and
Guan
,
J.
,
2012
, “
An Oxygen Release System to Augment Cardiac Progenitor Cell Survival and Differentiation Under Hypoxic Condition
,”
Biomaterials
,
33
(
25
), pp.
5914
5923
.10.1016/j.biomaterials.2012.05.012
71.
Ng
,
S. M.
,
Choi
,
J. Y.
,
Han
,
H. S.
,
Huh
,
J. S.
, and
Lim
,
J. O.
,
2010
, “
Novel Microencapsulation of Potential Drugs With Low Molecular Weight and High Hydrophilicity: Hydrogen Peroxide as a Candidate Compound
,”
Int. J. Pharm.
,
384
(
1–2
), pp.
120
127
.10.1016/j.ijpharm.2009.10.005
72.
Guaccio
,
A.
,
Borselli
,
C.
,
Oliviero
,
O.
, and
Netti
,
P. A.
,
2008
, “
Oxygen Consumption of Chondrocytes in Agarose and Collagen Gels: A Comparative Analysis
,”
Biomaterials
,
29
(
10
), pp.
1484
1493
.10.1016/j.biomaterials.2007.12.020
73.
Stoppel
,
W. L.
,
White
,
J. C.
,
Horava
,
S. D.
,
Bhatia
,
S. R.
, and
Roberts
,
S. C.
,
2011
, “
Transport of Biological Molecules in Surfactant-Alginate Composite Hydrogels
,”
Acta Biomater.
,
7
(
11
), pp.
3988
3998
.10.1016/j.actbio.2011.07.009
74.
Singh
,
B.
,
Sharma
,
S.
, and
Dhiman
,
A.
,
2013
, “
Design of Antibiotic Containing Hydrogel Wound Dressings: Biomedical Properties and Histological Study of Wound Healing
,”
Int. J. Pharm.
,
457
(
1
), pp.
82
91
.10.1016/j.ijpharm.2013.09.028
75.
Patil
,
P. S.
,
Evancho-Chapman
,
M. M.
,
Li
,
H.
,
Huang
,
H.
,
George
,
R. L.
,
Shriver
,
L. P.
, and
Leipzig
,
N. D.
,
2018
, “
Fluorinated Methacrylamide Chitosan Hydrogel Dressings Enhance Healing in an Acute Porcine Wound Model
,”
PLoS One
,
13
(
9
), p.
e0203371
.10.1371/journal.pone.0203371
76.
Wijekoon
,
A.
,
Fountas-Davis
,
N.
, and
Leipzig
,
N. D.
,
2013
, “
Fluorinated Methacrylamide Chitosan Hydrogel Systems as Adaptable Oxygen Carriers for Wound Healing
,”
Acta Biomater.
,
9
(
3
), pp.
5653
5664
.10.1016/j.actbio.2012.10.034
77.
Jee
,
J. P.
,
Pangeni
,
R.
,
Jha
,
S. K.
,
Byun
,
Y.
, and
Park
,
J. W.
,
2019
, “
Preparation and In Vivo Evaluation of a Topical Hydrogel System Incorporating Highly Skin-Permeable Growth Factors, Quercetin, and Oxygen Carriers for Enhanced Diabetic Wound-Healing Therapy
,”
Int. J. Nanomed.
,
14
, pp.
5449
5475
.10.2147/IJN.S213883
78.
Madden
,
L. R.
,
Mortisen
,
D. J.
,
Sussman
,
E. M.
,
Dupras
,
S. K.
,
Fugate
,
J. A.
,
Cuy
,
J. L.
,
Hauch
,
K. D.
,
Laflamme
,
M. A.
,
Murry
,
C. E.
, and
Ratner
,
B. D.
,
2010
, “
Proangiogenic Scaffolds as Functional Templates for Cardiac Tissue Engineering
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
34
), pp.
15211
15216
.10.1073/pnas.1006442107
79.
Thomson
,
K. S.
,
Korte
,
F. S.
,
Giachelli
,
C. M.
,
Ratner
,
B. D.
,
Regnier
,
M.
, and
Scatena
,
M.
,
2013
, “
Prevascularized Microtemplated Fibrin Scaffolds for Cardiac Tissue Engineering Applications
,”
Tissue Eng. Part A
,
19
(
7–8
), pp.
967
977
.10.1089/ten.tea.2012.0286
80.
Lee
,
J. B.
,
Kim
,
D.-H.
,
Yoon
,
J.-K.
,
Park
,
D. B.
,
Kim
,
H.-S.
,
Shin
,
Y. M.
,
Baek
,
W.
,
Kang
,
M.-L.
,
Kim
,
H. J.
, and
Sung
,
H.-J.
,
2020
, “
Microchannel Network Hydrogel Induced Ischemic Blood Perfusion Connection
,”
Nat. Commun.
,
11
(
1
), p.
615
.10.1038/s41467-020-14480-0
81.
Arakawa
,
C. K.
,
Badeau
,
B. A.
,
Zheng
,
Y.
, and
DeForest
,
C. A.
,
2017
, “
Multicellular Vascularized Engineered Tissues Through User-Programmable Biomaterial Photodegradation
,”
Adv. Mater.
,
29
(
37
), p.
1703156
.10.1002/adma.201703156
You do not currently have access to this content.