Abstract

Arteries grow and remodel following mechanical perturbation. Vascular smooth muscle cells (VSMCs) within the artery undergo hyperplasia, hypertrophy, or change their contractility following sustained changes in loading. Experimental evidence in vivo and in vitro suggests that VSMCs grow and remodel to maintain a constant transmural stress, or “target” stress. This behavior is often described using a stress-dependent finite growth framework. Typically, computational models of arterial growth and remodeling account for VSMC behavior in a constrained mixture formulation that incorporates behavior of each component of the artery. However, these models do not account for differential VSMC architecture observed in situ, which may significantly influence growth and remodeling behavior. Here, we used cellular microbiaxial stretching (CμBS) to characterize how VSMCs with different cytoskeletal architectures respond to a sustained step change in strain. We find that VSMC F-actin architecture becomes more aligned following stretch and retains this alignment after 24 h. Further, we find that VSMC stress magnitude depends on cellular architecture. Qualitatively, however, stress behavior following stretch is consistent across cell architectures—stress increases following stretch and returns to prestretch magnitudes after 24 h. Finally, we formulated an architecture-dependent targeted growth law that accounts for experimentally measured cytoskeletal alignment and attributes stress evolution to individual fiber growth and find that this model robustly captures long-term stress evolution in single VSMCs. These results suggest that VSMC mechano-adaptation depends on cellular architecture, which has implications for growth and remodeling in regions of arteries with differential architecture, such as at bifurcations.

References

1.
Benjamin
,
E. J.
,
Muntner
,
P.
,
Alonso
,
A.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Das
,
S. R.
,
Delling
,
F. N.
,
Djousse
,
L.
,
Elkind
,
M. S. V.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Jordan
,
L. C.
,
Khan
,
S. S.
,
Kissela
,
B. M.
,
Knutson
,
K. L.
,
Kwan
,
T. W.
,
Lackland
,
D. T.
,
Lewis
,
T. T.
,
Lichtman
,
J. H.
,
Longenecker
,
C. T.
,
Loop
,
M. S.
,
Lutsey
,
P. L.
,
Martin
,
S. S.
,
Matsushita
,
K.
,
Moran
,
A. E.
,
Mussolino
,
M. E.
,
O'Flaherty
,
M.
,
Pandey
,
A.
,
Perak
,
A. M.
,
Rosamond
,
W. D.
,
Roth
,
G. A.
,
Sampson
,
U. K. A.
,
Satou
,
G. M.
,
Schroeder
,
E. B.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Stokes
,
A.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Turakhia
,
M. P.
,
VanWagner
,
L. B.
,
Wilkins
,
J. T.
,
Wong
,
S. S.
, and
Virani
,
S. S.
,
On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee,
2019
, “
Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association
,”
Circulation
,
139
(
10
), pp.
e56
e528
.10.1161/CIR.0000000000000659
2.
DePaola
,
N.
,
Gimbrone
,
M. A.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
(
11
), pp.
1254
1257
.10.1161/01.ATV.12.11.1254
3.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
4.
Cahill
,
P. A.
, and
Redmond
,
E. M.
,
2016
, “
Vascular Endothelium - Gatekeeper of Vessel Health
,”
Atherosclerosis
,
248
, pp.
97
109
.10.1016/j.atherosclerosis.2016.03.007
5.
Peng
,
Z.
,
Shu
,
B.
,
Zhang
,
Y.
, and
Wang
,
M.
,
2019
, “
Endothelial Response to Pathophysiological Stress
,”
Arterioscler. Thromb. Vasc. Biol.
,
39
(
11
), pp.
e233
e243
.10.1161/ATVBAHA.119.312580
6.
Azuma
,
N.
,
Duzgun
,
S. A.
,
Ikeda
,
M.
,
Kito
,
H.
,
Akasaka
,
N.
,
Sasajima
,
T.
, and
Sumpio
,
B. E.
,
2000
, “
Endothelial Cell Response to Different Mechanical Forces
,”
J. Vasc. Surg.
,
32
(
4
), pp.
789
794
.10.1067/mva.2000.107989
7.
Chiu
,
J.-J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Revolut.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
8.
Chow
,
M. J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.10.1016/j.bpj.2014.05.014
9.
Gabriela Espinosa
,
M.
,
Catalin Staiculescu
,
M.
,
Kim
,
J.
,
Marin
,
E.
, and
Wagenseil
,
J. E.
,
2018
, “
Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
020803
.10.1115/1.403870428
10.
Xu
,
J.
, and
Shi
,
G.-P.
,
2014
, “
Vascular Wall Extracellular Matrix Proteins and Vascular Diseases
,”
Biochim. Biophys. Acta Mol. Cell Res.
,
1842
(
11
), pp.
2106
2119
.10.1016/j.bbadis.2014.07.008
11.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular ECM and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.10.1152/physrev.00041.2008
12.
Farb
,
A.
,
Kolodgie
,
F. D.
,
Hwang
,
J. Y.
,
Burke
,
A. P.
,
Tefera
,
K.
,
Weber
,
D. K.
,
Wight
,
T. N.
, and
Virmani
,
R.
,
2004
, “
Extracellular Matrix Changes in Stented Human Coronary Arteries
,”
Circulation
,
110
(
8
), pp.
940
947
.10.1161/01.CIR.0000139337.56084.30
13.
Schiffrin
,
E. L.
,
2012
, “
Vascular Remodeling in Hypertension: Mechanisms and Treatment
,”
Hypertension
,
59
(
2
), pp.
367
374
.10.1161/HYPERTENSIONAHA.111.187021
14.
Fridez
,
P.
,
Makino
,
A.
,
Kakoi
,
D.
,
Miyazaki
,
H.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2002
, “
Adaptation of Conduit Artery Vascular Smooth Muscle Tone to Induced Hypertension
,”
Ann. Biomed. Eng.
,
30
(
7
), pp.
905
916
.10.1114/1.1507326
15.
Fridez
,
P.
,
Makino
,
A.
,
Miyazaki
,
H.
,
Meister
,
J.-J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2001
, “
Short-Term Biomechanical Adaptation of the Rat Carotid to Acute Hypertension: Contribution of Smooth Muscle
,”
Ann. Biomed. Eng.
,
29
(
1
), pp.
26
34
.10.1114/1.1342054
16.
González
,
A.
,
Ravassa
,
S.
,
López
,
B.
,
Moreno
,
M. U.
,
Beaumont
,
J.
,
San José
,
G.
,
Querejeta
,
R.
,
Bayés-Genís
,
A.
, and
Díez
,
J.
,
2018
, “
Myocardial Remodeling in Hypertension Toward a New View of Hypertensive Heart Disease
,”
Hypertension
,
72
(
3
), pp.
549
558
.10.1161/HYPERTENSIONAHA.118.11125
17.
Laurent
,
S.
,
1995
, “
Arterial Wall Hypertrophy and Stiffness in Essential Hypertensive Patients
,”
Hypertension
,
26
(
2
), pp.
355
362
.10.1161/01.HYP.26.2.355
18.
Rizzoni
,
D.
,
Porteri
,
E.
,
Castellano
,
M.
,
Bettoni
,
G.
,
Muiesan
,
M. L.
,
Muiesan
,
P.
,
Giulini
,
S. M.
, and
Agabiti-Rosei
,
E.
,
1996
, “
Vascular Hypertrophy and Remodeling in Secondary Hypertension
,”
Hypertension
,
28
(
5
), pp.
785
790
.10.1161/01.HYP.28.5.785
19.
Lee
,
R. M. K. W.
,
Garfield
,
R. R.
,
Forrest
,
J. B.
, and
Daniel
,
E. E.
,
1983
, “
Morphometric Study of Structural Changes in the Mesenteric Blood Vessels of Spontaneously Hypertensive Rats
,”
J. Vasc. Res.
,
20
(
2
), pp.
57
71
.10.1159/000158460
20.
Mulvany
,
M. J.
,
Baandrup
,
U.
, and
Gundersen
,
H. J. G.
,
1985
, “
Evidence for Hyperplasia in Mesenteric Resistance Vessels of Spontaneously Hypertensive Rats Using a Three-Dimensional Disector
,”
Circ. Res.
,
57
(
5
), pp.
794
800
.10.1161/01.RES.57.5.794
21.
Owens
,
G. K.
, and
Reidy
,
M. A.
,
1985
, “
Hyperplastic Growth Response of Vascular Smooth Muscle Cells Following Induction of Acute Hypertension in Rats by Aortic Coarctation
,”
Circ. Res.
,
57
(
5
), pp.
695
705
.10.1161/01.RES.57.5.695
22.
Bevan
,
R. D.
,
van Marthens
,
E.
, and
Bevan
,
J. A.
,
1976
, “
Hyperplasia of Vascular Smooth Muscle in Experimental Hypertension in the Rabbit
,”
Circ. Res.
,
38
(
6
), pp.
58
62
.10.1161/01.RES.38.6.58
23.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodelling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.10.1080/10255840801930710
24.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model Mechanobiol.
,
7
(
4
), pp.
245
262
.10.1007/s10237-007-0101-2
25.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.10.1006/jtbi.1996.0107
26.
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2001
, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
528
535
.10.1115/1.1412451
27.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
28.
Steucke
,
K. E.
,
Win
,
Z.
,
Stemler
,
T. R.
,
Walsh
,
E. E.
,
Hall
,
J. L.
, and
Alford
,
P. W.
,
2017
, “
Empirically Determined Vascular Smooth Muscle Cell Mechano-Adaptation Law
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071005
.10.1115/1.403645436
29.
Alford
,
P. W.
,
Nesmith
,
A. P.
,
Seywerd
,
J. N.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2011
, “
Vascular Smooth Muscle Contractility Depends on Cell Shape
,”
Int. Biol.
,
3
(
11
), pp.
1063
1070
.10.1039/c1ib00061f
30.
Win
,
Z.
,
Buksa
,
J. M.
,
Steucke
,
K. E.
,
Gant Luxton
,
G. W.
,
Barocas
,
V. H.
, and
Alford
,
P. W.
,
2017
, “
Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
71006
.10.1115/1.4036440
31.
Win
,
Z.
,
Buksa
,
J. M.
, and
Alford
,
P. W.
,
2018
, “
Architecture-Dependent Anisotropic Hysteresis in Smooth Muscle Cells
,”
Biophys. J.
,
115
(
10
), pp.
2044
2054
.10.1016/j.bpj.2018.09.027
32.
Walmsley
,
J. G.
,
1983
, “
Vascular Smooth Muscle Orientation in Straight Portions of Human Cerebral Arteries
,”
J. Microsc.
,
131
(
3
), pp.
361
375
.10.1111/j.1365-2818.1983.tb04261.x
33.
Peters
,
M. W.
,
Canham
,
P. B.
, and
Finlay
,
H. M.
,
1983
, “
Circumferential Alignment of Muscle Cells in the Tunica Media of the Human Brain Artery
,”
J. Vasc. Res.
,
20
(
5
), pp.
221
233
.10.1159/000158475
34.
Canham
,
P. B.
,
Henderson
,
R. M.
, and
Peters
,
M. W.
,
1982
, “
Coalignment of the Muscle Cell and Nucleus, Cell Geometry and VV in the Tunica Media of Monkey Cerebral Arteries, by Electron Microscopy
,”
J. Microsc.
,
127
(
3
), pp.
311
319
.10.1111/j.1365-2818.1982.tb00428.x
35.
Ushiwata
,
I.
, and
Ushiki
,
T.
,
1990
, “
Cytoarchitecture of the Smooth Muscles and Pericytes of Rat Cerebral Blood Vessels
,”
J. Neurosurg.
,
73
(
1
), pp.
82
90
.10.3171/jns.1990.73.1.0082
36.
Kondo
,
M.
,
Miyazaki
,
T.
, and
Tabei
,
R.
,
1991
, “
Morphological Changes in Cerebral Vascular Smooth Muscle Cells in SHRSP
,”
Int. Heart J.
,
32
(
4
), p.
541
.10.1007/BF0289009545
37.
Rhodin
,
J. A. G.
,
1968
, “
Ultrastructure of Mammalian Venous Capillaries, Venules, and Small Collecting Veins
,”
J. Ultrasruct. Res.
,
25
(
5–6
), pp.
452
500
.10.1016/S0022-5320(68)80098-X
38.
Lee
,
R. M. K. W.
,
1995
, “
Morphology of Cerebral Arteries
,”
Pharmacol. Ther.
,
66
(
1
), pp.
149
173
.10.1016/0163-7258(94)00071-A
39.
Walmsley
,
J. G.
,
1983
, “
Vascular Smooth Muscle Orientation in Curved Branches and Bifurcations of Human Cerebral Arteries
,”
J. Microsc.
,
131
(
3
), pp.
377
389
.10.1111/j.1365-2818.1983.tb04262.x
40.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model Mechanobiol.
,
2
(
2
), pp.
109
126
.10.1007/s10237-003-0033-4
41.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2005
, “
A 2D Constrained Mixture Model for Arterial Adaptations to Large Changes in Flow, Pressure and Axial Stretch
,”
Math. Med. Biol.
,
22
(
4
), pp.
347
369
.10.1093/imammb/dqi014
42.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
43.
Wagenseil
,
J. E.
,
2011
, “
A Constrained Mixture Model for Developing Mouse Aorta
,”
Biomech. Model Mechanobiol.
,
10
(
5
), pp.
671
687
.10.1007/s10237-010-0265-z
44.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
142
149
.10.1115/1.2132374
45.
Han
,
M.
,
Wen
,
J. K.
,
Zheng
,
B.
,
Cheng
,
Y.
, and
Zhang
,
C.
,
2006
, “
Serum Deprivation Results in Redifferentiation of Human Umbilical Vascular Smooth Muscle Cells
,”
Am. J. Physiol. Cell Physiol.
,
291
(
1
), pp.
50
58
.10.1152/ajpcell.00524.200570
46.
Feinberg
,
A. W.
,
Alford
,
P. W.
,
Jin
,
H.
,
Ripplinger
,
C. M.
,
Werdich
,
A. A.
,
Sheehy
,
S. P.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2012
, “
Controlling the Contractile Strength of Engineered Cardiac Muscle by Hierarchal Tissue Architecture
,”
Biomaterials
,
33
(
23
), pp.
5732
5741
.10.1016/j.biomaterials.2012.04.043
47.
Tseng
,
Q.
,
Duchemin-Pelletier
,
E.
,
Deshiere
,
A.
,
Balland
,
M.
,
Guillou
,
H.
,
Filhol
,
O.
, and
Thery
,
M.
,
2012
, “
Spatial Organization of the Extracellular Matrix Regulates Cell-Cell Junction Positioning
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
5
), pp.
1506
1511
.10.1073/pnas.1106377109
48.
Butler
,
J. P.
,
Tolic-Norrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings
,”
AJP Cell Physiol.
,
282
(
3
), pp.
C595
C605
.10.1152/ajpcell.00270.2001
49.
Sopasakis
,
P.
,
2020
, “
PDFsampler
,” MATLAB Central File Exchange, Natick, MA, accessed Jan. 20, 2020, https://www.mathworks.com/matlabcentral/fileexchange/41689-pdfsampler
50.
Olson
,
M. F.
, and
Sahai
,
E.
,
2009
, “
The Actin Cytoskeleton in Cancer Cell Motility
,”
Clin. Exp. Metastasis
,
26
(
4
), pp.
273
287
.10.1007/s10585-008-9174-2
51.
Mitchison
,
T. J.
, and
Cramer
,
L. P.
,
1996
, “
Actin-Based Cell Motility and Cell Locomotion
,”
Cell
,
84
(
3
), pp.
371
379
.10.1016/S0092-8674(00)81281-7
52.
Blanchoin
,
L.
,
Boujemaa-Paterski
,
R.
,
Sykes
,
C.
, and
Plastino
,
J.
,
2014
, “
Actin Dynamics, Architecture, and Mechanics in Cell Motility
,”
Physiol. Rev.
,
94
(
1
), pp.
235
263
.10.1152/physrev.00018.2013
53.
Win
,
Z.
,
Vrla
,
G. D.
,
Steucke
,
K. E.
,
Sevcik
,
E. N.
,
Hald
,
E. S.
, and
Alford
,
P. W.
,
2014
, “
Smooth Muscle Architecture Within Cell-Dense Vascular Tissues Influences Functional Contractility
,”
Integr. Biol.
,
6
(
12
), pp.
1201
1210
.10.1039/C4IB00193A
54.
Kuo
,
P. L.
,
Lee
,
H.
,
Bray
,
M. A.
,
Geisse
,
N. A.
,
Huang
,
Y. T.
,
Adams
,
W. J.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
,
2012
, “
Myocyte Shape Regulates Lateral Registry of Sarcomeres and Contractility
,”
Am. J. Pathol.
,
181
(
6
), pp.
2030
2037
.10.1016/j.ajpath.2012.08.045
55.
Yuan
,
H.
,
Marzban
,
B.
, and
Kit Parker
,
K.
,
2017
, “
Myofibrils in Cardiomyocytes Tend to Assemble Along the Maximal Principle Stress Directions
,”
ASME J. Biomech. Eng.
,
139
(
12
), p.
121010
.10.1115/1.4037795
56.
Gomez
,
E. W.
,
Chen
,
Q. K.
,
Gjorevski
,
N.
, and
Nelson
,
C. M.
,
2010
, “
Tissue Geometry Patterns Epithelial-Mesenchymal Transition Via Intercellular Mechanotransduction
,”
J. Cell. Biochem.
,
110
(
1
), pp.
44
51
.10.1002/jcb.22545
57.
O'Connor
,
J. W.
, and
Gomez
,
E. W.
,
2013
, “
Cell Adhesion and Shape Regulate TGF-Beta1-Induced Epithelial-Myofibroblast Transition Via MRTF-A Signaling
,”
PLoS One
,
8
(
12
), p.
e83188
.10.1371/journal.pone.0083188
58.
Nelson
,
C. M.
,
Khauv
,
D.
,
Bissell
,
M. J.
, and
Radisky
,
D. C.
,
2008
, “
Change in Cell Shape is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells
,”
J. Cell. Biochem.
,
105
(
1
), pp.
25
33
.10.1002/jcb.21821
59.
Nelson
,
C. M.
,
Jean
,
R. P.
,
Tan
,
J. L.
,
Liu
,
W. F.
,
Sniadecki
,
N. J.
,
Spector
,
A. A.
, and
Chen
,
C. S.
,
2005
, “
Emergent Patterns of Growth Controlled by Multicellular Form and Mechanics
,”
PNAS
,
102
(
33
), pp.
11594
11599
.10.1073/pnas.0502575102
60.
Chanet
,
S.
,
Miller
,
C. J.
,
Vaishnav
,
E. D.
,
Ermentrout
,
B.
,
Davidson
,
L. A.
, and
Martin
,
A. C.
,
2017
, “
Actomyosin Meshwork Mechanosensing Enables Tissue Shape to Orient Cell Force
,”
Nat. Commun.
,
8
(
15014
), pp.
1
13
. 10.1038/ncomms15014
61.
Latacha
,
K. S.
,
Re
,
M. C.
,
Ramasubramanian
,
A.
,
Chen
,
A. Y.
,
Elson
,
E. L.
, and
Taber
,
L. A.
,
2005
, “
Role of Actin Polymerization in Bending of the Early Heart Tube
,”
Dev. Dyn.
,
233
(
4
), pp.
1272
1286
.10.1002/dvdy.20488
62.
Nelson
,
C. M.
,
VanDuijn
,
M. M.
,
Inman
,
J. L.
,
Fletcher
,
D. A.
, and
Bissell
,
M. J.
,
2006
, “
Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures
,”
Science (80-)
,
314
(
5797
), pp.
298
300
.10.1126/science.1131000
63.
Théry
,
M.
,
2010
, “
Micropatterning as a Tool to Decipher Cell Morphogenesis and Functions
,”
J. Cell Sci.
,
123
(
24
), pp.
4201
4213
.10.1242/jcs.075150
64.
Jiao
,
F.
,
Zhao
,
Y.
,
Sun
,
Q.
, and
Huo
,
B.
,
2020
, “
Spreading Area and Shape Regulate the Apoptosis and Osteogenesis of Mesenchymal Stem Cells on Circular and Branched Micropatterned Islands
,”
J. Biomed. Mater. Res. Part A
,
108
(
10
), pp.
2080
2089
.10.1002/jbm.a.36967
65.
Wu
,
C.-C.
,
Li
,
Y.-S.
,
Haga
,
J. H.
,
Kaunas
,
R.
,
Chiu
,
J.-J.
,
Su
,
F.-C.
,
Usami
,
S.
, and
Chien
,
S.
,
2007
, “
Directional Shear Flow and Rho Activation Prevent the Endothelial Cell Apoptosis Induced by Micropatterned Anisotropic Geometry
,”
PNAS
,
104
(
4
), pp.
1254
1259
.10.1073/pnas.0609806104
66.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1998
, “
Micropatterned Surfaces for Control of Cell Shape, Position, and Function
,”
Biotechnol. Prog.
,
14
(
3
), pp.
356
363
.10.1021/bp980031m
67.
Rothermel
,
T. M.
,
Win
,
Z.
, and
Alford
,
P. W.
,
2020
, “
Large-Deformation Strain Energy Density Function for Vascular Smooth Muscle Cells
,”
J. Biomech.
,
111
, p.
110005
.10.1016/j.jbiomech.2020.110005
68.
Hsu
,
H. J.
,
Lee
,
C. F.
,
Locke
,
A.
,
Vanderzyl
,
S. Q.
, and
Kaunas
,
R.
,
2010
, “
Stretch-Induced Stress Fiber Remodeling and the Activations of JNK and ERK Depend on Mechanical Strain Rate, but Not FAK
,”
PLoS One
,
5
(
8
), p.
e12470
.10.1371/journal.pone.0012470
69.
Liu
,
B.
,
Qu
,
M. J.
,
Qin
,
K. R.
,
Li
,
H.
,
Li
,
Z. K.
,
Shen
,
B. R.
, and
Jiang
,
Z. L.
,
2008
, “
Role of Cyclic Strain Frequency in Regulating the Alignment of Vascular Smooth Muscle Cells In Vitro
,”
Biophys. J.
,
94
(
4
), pp.
1497
1507
.10.1529/biophysj.106.098574
70.
Zhu
,
J. H.
,
Chen
,
C. L.
,
Flavahan
,
S.
,
Harr
,
J.
,
Su
,
B.
, and
Flavahan
,
N. A.
,
2011
, “
Cyclic Stretch Stimulates Vascular Smooth Muscle Cell Alignment by Redox-dependent Activation of Notch3
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
300
(
5
), pp.
1770
1780
. 10.1152/ajpheart.00535.2010
71.
Chen
,
K.
,
Vigliotti
,
A.
,
Bacca
,
M.
,
McMeeking
,
R. M.
,
Deshpande
,
V. S.
, and
Holmes
,
J. W.
,
2018
, “
Role of Boundary Conditions in Determining Cell Alignment in Response to Stretch
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
5
), pp.
986
991
.10.1073/pnas.1715059115
72.
Xu
,
J. Q.
,
Harder
,
B. A.
,
Uman
,
P.
, and
Craig
,
R.
,
1996
, “
Myosin Filament Structure in Vertebrate Smooth Muscle
,”
J. Cell Biol.
,
134
(
1
), pp.
53
66
.10.1083/jcb.134.1.53
73.
Pellegrin
,
S.
, and
Mellor
,
H.
,
2007
, “
Actin Stress Fibers
,”
J. Cell Sci.
,
120
(
20
), pp.
3491
3499
.10.1242/jcs.018473
74.
Tojkander
,
S.
,
Gateva
,
G.
, and
Lappalainen
,
P.
,
2012
, “
Actin Stress Fibers - Assembly, Dynamics and Biological Roles
,”
J. Cell Sci.
,
125
(
8
), pp.
1855
1864
.10.1242/jcs.098087
75.
Chapin
,
L. M.
,
Blankman
,
E.
,
Smith
,
M. A.
,
Shiu
,
Y. T.
, and
Beckerle
,
M. C.
,
2012
, “
Lateral Communication Between Stress Fiber Sarcomeres Facilitates a Local Remodeling Response
,”
Biophys. J.
,
103
(
10
), pp.
2082
2092
.10.1016/j.bpj.2012.09.038
76.
Yoshigi
,
M.
,
Hoffman
,
L. M.
,
Jensen
,
C. C.
,
Yost
,
H. J.
, and
Beckerle
,
M. C.
,
2005
, “
Mechanical Force Mobilizes Zyxin From Focal Adhesions to Actin Filaments and Regulates Cytoskeletal Reinforcement
,”
J. Cell Biol.
,
171
(
2
), pp.
209
215
.10.1083/jcb.200505018
77.
Hoffman
,
L. M.
,
Jensen
,
C. C.
,
Chaturvedi
,
A.
,
Yoshigi
,
M.
, and
Beckerle
,
M. C.
,
2012
, “
Stretch-Induced Actin Remodeling Requires Targeting of Zyxin to Stress Fibers and Recruitment of Actin Regulators
,”
Mol. Biol. Cell
,
23
(
10
), pp.
1846
1859
.10.1091/mbc.e11-12-1057
78.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
,
39
(
14
), pp.
2603
2610
.10.1016/j.jbiomech.2005.08.026
79.
Na
,
S.
,
Meininger
,
G. A.
, and
Humphrey
,
J. D.
,
2007
, “
A Theoretical Model for F-Actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch
,”
J. Theor. Biol.
,
246
(
1
), pp.
87
99
.10.1016/j.jtbi.2006.11.015
80.
Murtada
,
S. I.
,
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2017
, “
Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle
,”
Biophys. J.
,
113
(
3
), pp.
714
727
.10.1016/j.bpj.2017.06.017
81.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2007
, “
A Model for the Contractility of the Cytoskeleton Including the Effects of Stress-Fibre Formation and Dissociation
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2079
), pp.
787
815
.10.1098/rspa.2006.1793
You do not currently have access to this content.