Abstract

Head injury model validation has evolved from against pressure to relative brain–skull displacement, and more recently, against marker-based strain. However, there are concerns on strain data quality. In this study, we parametrically investigate how displacement random errors and synchronization errors propagate into strain. Embedded markers from four representative configurations are used to form unique and nonoverlapping tetrahedrons, triangles, and linear elements. Marker displacements are then separately subjected to up to ±10% random displacement errors and up to ±2 ms synchronization errors. Based on 100 random trials in each perturbation test, we find that smaller strain errors relative to the baseline peak strains are significantly associated with larger element sizes (volume, area, or length; p < 0.05). When displacement errors are capped at the two extreme levels, the earlier “column” and “cluster” configurations provide few usable elements with relative strain error under an empirical threshold of 20%, while about 30–80% of elements in recent “repeatable” and “uniform” configurations are considered otherwise usable. Overall, denser markers are desired to provide exhaustive pairwise linear elements with a range of sizes to balance the need for larger elements to minimize strain error but smaller elements to increase the spatial resolution in strain sampling. Their signed strains also provide unique and unambiguous information on tissue tension and compression. This study may provide useful insights into the scrutinization of existing experimental data for head injury model strain validation and to inform how best to design new experiments in the future.

References

1.
CDC
,
2015
, “
Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation
,” National Center for Injury Prevention and Control, Division of Unintentional Injury Prevention, Atlanta, GA.
2.
Dewan
,
M. C.
,
Rattani
,
A.
,
Gupta
,
S.
,
Baticulon
,
R. E.
,
Hung
,
Y. C.
,
Punchak
,
M.
,
Agrawal
,
A.
,
Adeleye
,
A. O.
,
Shrime
,
M. G.
,
Rubiano
,
A. M.
,
Rosenfeld
,
J. V.
, and
Park
,
K. B.
,
2019
, “
Estimating the Global Incidence of Traumatic Brain Injury
,”
J. Neurosurg.
,
130
(
4
), pp.
1080
1097
.10.3171/2017.10.JNS17352
3.
Bramlett
,
H. M.
, and
Dietrich
,
W. D.
,
2015
, “
Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes
,”
J. Neurotrauma
,
32
(
23
), pp.
1834
1848
.10.1089/neu.2014.3352
4.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Bass
,
C. R.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026364
5.
Bryden
,
D. W.
,
Tilghman
,
J. I.
, and
Hinds
,
S. R.
,
2019
, “
Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations
,”
J. Exp. Neurosci.
,
13
, pp.
1
11
. https://journals.sagepub.com/doi/full/10.1177/1179069519872213
6.
Daneshvar
,
D. H.
,
Nowinski
,
C. J.
,
Mckee
,
A. C.
, and
Cantu
,
R. C.
,
2011
, “
The Epidemiology of Sport-Related Concussion
,”
Clin. Sports Med.
,
30
(
1
), pp.
1
17
.10.1016/j.csm.2010.08.006
7.
Cloots
,
R. J. H.
,
van Dommelen
,
J. A. W.
,
Kleiven
,
S.
, and
Geers
,
M. G. D.
,
2013
, “
Multi-Scale Mechanics of Traumatic Brain Injury: Predicting Axonal Strains From Head Loads
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
137
150
.10.1007/s10237-012-0387-6
8.
Versace
,
J.
,
1971
, “
A Review of the Severity Index
,”
SAE
Paper No. 710881.10.4271/710881
9.
Gadd
,
C.
,
1966
, “
Use of a Weighted Impulse Criterion for Estimating Injury Hazard
,”
SAE
Paper No. 660793.10.4271/660793
10.
Takhounts
,
E. G. G.
,
Craig
,
M. J. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.10.4271/2013-22-0010
11.
Kimpara
,
H.
, and
Iwamoto
,
M.
,
2012
, “
Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
114
126
.10.1007/s10439-011-0414-2
12.
Rowson
,
S.
, and
Duma
,
S. M.
,
2013
, “
Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
873
882
.10.1007/s10439-012-0731-0
13.
Newman
,
J.
,
Shewchenko
,
N.
,
Welbourn
,
E.
,
Welbourne
,
E.
, and
Welbourn
,
E.
,
2000
, “
A Proposed New Biomechanical Head Injury Assessment Function—The Maximum Power Index
,”
Stapp Car Crash J.
,
44
(
724
), pp.
215
247
.10.4271/2000-01-SC16
14.
Greenwald
,
R. M.
,
Gwin
,
J. T.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
,
2008
, “
Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure
,”
Neurosurgery
,
62
(
4
), pp.
789
798
.10.1227/01.neu.0000318162.67472.ad
15.
King
,
A. I.
,
Yang
,
K. H.
,
Zhang
,
L.
,
Hardy
,
W.
, and
Viano
,
D. C.
,
2003
, “
Is Head Injury Caused by Linear or Angular Acceleration?
,”
IRCOBI Conference
, Lisbon, Portugal, Sept. 25–26, pp.
1
12
.http://www.ircobi.org/wordpress/downloads/irc0111/2003/BertilAldmanLecture/0.1.pdf
16.
Yang
,
K. H.
,
Hu
,
J.
,
White
,
N. A.
,
King
,
A. I.
,
Chou
,
C. C.
, and
Prasad
,
P.
,
2006
, “
Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference
,”
Stapp Car Crash J.
,
50
, pp.
429
490
.10.4271/2006-22-0017
17.
Madhukar
,
A.
, and
Ostoja-Starzewski
,
M.
,
2019
, “
Finite Element Methods in Human Head Impact Simulations: A Review
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1832
1854
.10.1007/s10439-019-02205-4
18.
Giudice
,
J. S.
,
Zeng
,
W.
,
Wu
,
T.
,
Alshareef
,
A.
,
Shedd
,
D. F.
, and
Panzer
,
M. B.
,
2019
, “
An Analytical Review of the Numerical Methods Used for Finite Element Modeling of Traumatic Brain Injury
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1855
1872
.10.1007/s10439-018-02161-5
19.
Ji
,
S.
,
Ghadyani
,
H.
,
Bolander
,
R.
,
Beckwith
,
J.
,
Ford
,
J. C.
,
McAllister
,
T.
,
Flashman
,
L. A.
,
Paulsen
,
K. D.
,
Ernstrom
,
K.
,
Jain
,
S.
,
Raman
,
R.
,
Zhang
,
L.
, and
Greenwald
,
R. M.
,
2014
, “
Parametric Comparisons of Intracranial Mechanical Responses From Three Validated Finite Element Models of the Human Head
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
11
24
.10.1007/s10439-013-0907-2
20.
Fahlstedt
,
M.
,
Abayazid
,
F.
,
Panzer
,
M. B.
,
Trotta
,
A.
,
Zhao
,
W.
,
Ghajari
,
M.
,
Gilchrist
,
M. D.
,
Ji
,
S.
,
Kleiven
,
S.
,
Li
,
X.
,
Annaidh
,
A. N.
, and
Halldin
,
P.
,
2021
, “
Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models
,”
Ann. Biomed. Eng.
,
49
(
3
), pp.
1097
1109
.10.1007/s10439-020-02703-w
21.
Zhang
,
J.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Gennarelli
,
T. A.
, and
Son
,
S. F.
,
2009
, “
Experimental Study of Blast-Induced Traumatic Brain Injury Using a Physical Head Model
,”
Stapp Car Crash J.
,
53
, pp.
215
227
.10.4271/2009-22-0008
22.
Xiong
,
Y.
,
Mahmood
,
A.
, and
Chopp
,
M.
,
2013
, “
Animal Models of Traumatic Brain Injury
,”
Nat. Rev. Neurosci.
,
14
(
2
), pp.
128
142
.10.1038/nrn3407
23.
Sullivan
,
S.
,
Eucker
,
S. A.
,
Gabrieli
,
D.
,
Bradfield
,
C.
,
Coats
,
B.
,
Maltese
,
M. R.
,
Lee
,
J.
,
Smith
,
C.
, and
Margulies
,
S. S.
,
2015
, “
White Matter Tract-Oriented Deformation Predicts Traumatic Axonal Brain Injury and Reveals Rotational Direction-Specific Vulnerabilities
,”
Biomech. Model. Mechanobiol.
,
14
(
4
), pp.
877
896
.10.1007/s10237-014-0643-z
24.
Chandra
,
N.
,
Sundaramurthy
,
A.
, and
Gupta
,
R. K.
,
2017
, “
Validation of Laboratory Animal and Surrogate Human Models in Primary Blast Injury Studies
,”
Mil. Med.
,
182
(
S1
), pp.
105
113
.10.7205/MILMED-D-16-00144
25.
Petrone
,
N.
,
Candiotto
,
G.
,
Marzella
,
E.
,
Uriati
,
F.
,
Carraro
,
G.
,
Bäckström
,
M.
, and
Koptyug
,
A.
,
2019
, “
Feasibility of Using a Novel Instrumented Human Head Surrogate to Measure Helmet, Head and Brain Kinematics and Intracranial Pressure During Multidirectional Impact Tests
,”
J. Sci. Med. Sport
,
22
, pp.
S78
S84
.10.1016/j.jsams.2019.05.015
26.
Bayly
,
P. V.
,
Clayton
,
E. H.
, and
Genin
,
G. M.
,
2012
, “
Quantitative Imaging Methods for the Development and Validation of Brain Biomechanics Models
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
369
396
.10.1146/annurev-bioeng-071811-150032
27.
Chatelin
,
S.
,
Constantinesco
,
A.
, and
Willinger
,
R.
,
2010
, “
Fifty Years of Brain Tissue Mechanical Testing: From In Vitro to In Vivo Investigations
,”
Biorheology
,
47
(
5–6
), pp.
255
276
.10.3233/BIR-2010-0576
28.
Zhao
,
W.
,
Choate
,
B.
, and
Ji
,
S.
,
2018
, “
Material Properties of the Brain in Injury-Relevant Conditions—Experiments and Computational Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
222
234
.10.1016/j.jmbbm.2018.02.005
29.
Trosseille
,
X.
,
Tarriere
,
C.
,
Lavaste
,
F.
,
Guillon
,
F.
, and
Domont
,
A.
,
1992
, “
Development of a FEM of the Human Head According to a Specific Test Protocol
,”
SAE
Paper No. 922527.10.4271/922527
30.
Nahum
,
A. M.
,
Smith
,
R.
, and
Ward
,
C. C.
,
1977
, “
Intracranial Pressure Dynamics During Head Impact
,”
SAE
Paper No. 770922.10.4271/770922
31.
Zhao
,
W.
,
Ruan
,
S.
, and
Ji
,
S.
,
2015
, “
Brain Pressure Responses in Translational Head Impact: A Dimensional Analysis and a Further Computational Study
,”
Biomech. Model. Mechanobiol.
,
14
(
4
), pp.
753
766
.10.1007/s10237-014-0634-0
32.
Bradshaw
,
D.
, and
Morfey
,
C.
,
2001
, “
Pressure and Shear Response in Brain Injury Models
,”
Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles
, Amsterdam, The Netherlands, June 4–7, pp.
1
10
.https://www.sae.org/publications/technical-papers/content/2001-06-0197/
33.
Hardy
,
W. N. N.
,
Foster
,
C. D.
,
Mason
,
M. J.
,
Yang
,
K. H.
,
King
,
A. I.
, and
Tashman
,
S.
,
2001
, “
Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray
,”
Stapp Car Crash J.
,
45
, pp.
337
–3
68
.10.4271/2001-22-0016
34.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Bishop
,
J.
,
Bey
,
M.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash J.
,
51
, pp.
17
80
. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474809/
35.
Guettler
,
A. J.
,
Ramachandra
,
R.
,
Bolte
,
J.
, and
Hardy
,
W. N.
,
2018
, “
Kinematics Response of the PMHS Brain to Rotational Loading of the Head: Development of Experimental Methods and Analysis of Preliminary Data
,” SAE Technical Paper No.
2018-01-0547
.https://www.sae.org/publications/technical-papers/content/2018-01-0547/
36.
Guettler
,
A. J.
,
2018
, “
Quantifying the Response of Relative Brain/Skull Motion to Rotational Input in the PMHS Head
,” Doctoral dissertation,
Virginia Tech
,
Blacksburg, VA
.
37.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Shedd
,
D. F.
,
Reynier
,
K. A.
,
Wu
,
T.
,
Sochor
,
S.
,
Sochor
,
M. R.
,
Salzar
,
R. S.
, and
Panzer
,
M. B.
,
2020
, “
Biomechanics of the Human Brain During Dynamic Rotation of the Head
,”
J. Neurotrauma
,
37
(
13
), pp.
1546
1555
.10.1089/neu.2019.6847
38.
Zhou
,
Z.
,
Li
,
X.
,
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2019
, “
Brain Strain From Motion of Sparse Markers
,”
Stapp Car Crash J.
,
63
, pp.
1
27
.10.4271/2019-22-0001
39.
Zhao
,
W.
, and
Ji
,
S.
,
2020
, “
Displacement- and Strain-Based Discrimination of Head Injury Models Across a Wide Range of Blunt Conditions
,”
Ann. Biomed. Eng.
,
48
(
6
), pp.
1661
1677
.10.1007/s10439-020-02496-y
40.
Zhou
,
Z.
,
Li
,
X.
,
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2018
, “
A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model Validation
,”
Stapp Car Crash J.
,
62
, pp. 293–318.10.4271/2018-22-0007
41.
Li
,
X.
,
Zhou
,
Z.
, and
Kleiven
,
S.
,
2020
, “
An Anatomically Accurate and Personalizable Head Injury Model: Significance of Brain and White Matter Tract Morphological Variability on Strain
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
403
431
.https://link.springer.com/article/10.1007/s10237-020-01391-8
42.
Wu
,
T.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
,
2019
, “
Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1908
1922
.10.1007/s10439-019-02239-8
43.
Hardy
,
W.
,
2007
, “
Response of the Human Cadaver Head to Impact
,” Ph.D. dissertation,
Wayne State University
,
Detroit, MI
.
44.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Shedd
,
D. F.
,
Wu
,
T.
,
Reynier
,
K. A.
, and
Panzer
,
M. B.
,
2020
, “
Application of Trilateration and Kalman Filtering Algorithms to Track Dynamic Brain Deformation Using Sonomicrometry
,”
Biomed. Signal Process. Control
,
56
, p.
101691
.10.1016/j.bspc.2019.101691
45.
Whyte
,
T.
,
Liu
,
J.
,
Chung
,
V.
,
McErlane
,
S. A.
,
Abebe
,
Z. A.
,
McInnes
,
K. A.
,
Wellington
,
C. L.
, and
Cripton
,
P. A.
,
2019
, “
Technique and Preliminary Findings for In Vivo Quantification of Brain Motion During Injurious Head Impacts
,”
J. Biomech.
,
95
, p.
109279
.10.1016/j.jbiomech.2019.07.023
46.
Giordano
,
C.
, and
Kleiven
,
S.
,
2016
, “
Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models Used in Prediction of Traumatic Brain Injury
,”
Stapp Car Crash J.
,
60
, pp.
363
471
.
47.
Zhao
,
W.
, and
Ji
,
S.
,
2020
, “
Incorporation of Vasculature in a Head Injury Model Lowers Local Mechanical Strains in Dynamic Impact
,”
J. Biomech.
,
104
, p.
109732
.10.1016/j.jbiomech.2020.109732
48.
GehreGades
,
C. H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
21st ESV Conference
, Stuttgart, Germany, June 15–18, pp.
1
8
https://trid.trb.org/view/1100058#:~:text=Objective%20Rating%20of%20Signals%20Using%20Test%20and%20Simulation%20Responses,-Today%20the%20numerical&text=In%20this%20paper%2C%20a%20new,and%20a%20cross%2Dcorrelation%20rating.
You do not currently have access to this content.