Abstract

The risk of type-A dissection is increased in subjects with connective tissue disorders and dilatation of the proximal aorta. The location and extents of vessel wall tears in these patients could be potentially missed during prospective imaging studies. The objective of this study is to estimate the distribution of systolic wall stress in two exemplary cases of proximal dissection using finite element analysis (FEA) and evaluate the sensitivity of the distribution to the choice of anisotropic material model and root motion. FEA was performed for predissection aortas, without prior knowledge of the origin and extents of vessel wall tear. The stress distribution was evaluated along the wall tear in the postdissection aortas. The stress distribution was compared for the Fung and Holzapfel models with and without root motion. For the subject with spiral dissection, peak stress coincided with the origin of the tear in the sinotubular junction. For the case with root dissection, maximum stress was obtained at the distal end of the tear. The FEA predicted tear pressure was 20% higher for the subject with root dissection as compared to the case with spiral dissection. The predicted tear pressure was higher (9–11%) for root motions up to 10 mm. The Holzapfel model predicted a tear pressure that was lower (8–15%) than the Fung model. The FEA results showed that both material response and root motion could potentially influence the predicted dissection pressure of the proximal aorta at least for conditions tested in this study.

References

1.
Nataf
,
P.
, and
Lansac
,
E.
,
2006
, “
Dilation of the Thoracic Aorta: Medical and Surgical Management
,”
Heart
,
92
(
9
), pp.
1345
1352
.10.1136/hrt.2005.074781
2.
Isselbacher Eric
,
M.
,
2005
, “
Thoracic and Abdominal Aortic Aneurysms
,”
Circulation
,
111
(
6
), pp.
816
828
.10.1161/01.CIR.0000154569.08857.7A
3.
Elsheikh
,
M.
,
Casadei
,
B.
,
Conway
,
G. S.
, and
Wass
,
J. A. H.
,
2001
, “
Hypertension is a Major Risk Factor for Aortic Root Dilatation in Women With Turner's Syndrome
,”
Clin. Endocrinol.
,
54
(
1
), pp.
69
73
.10.1046/j.1365-2265.2001.01154.x
4.
Humphrey
,
J. D.
,
Schwartz
,
M. A.
,
Tellides
,
G.
, and
Milewicz
,
D. M.
,
2015
, “
Role of Mechanotransduction in Vascular Biology
,”
Circ. Res.
,
116
(
8
), pp.
1448
1461
.10.1161/CIRCRESAHA.114.304936
5.
Hagan
,
P. G.
,
Nienaber
,
C. A.
,
Isselbacher
,
E. M.
,
Bruckman
,
D.
,
Karavite
,
D. J.
,
Russman
,
P. L.
,
Evangelista
,
A.
,
Fattori
,
R.
,
Suzuki
,
T.
,
Oh
,
J. K.
,
Moore
,
A. G.
,
Malouf
,
J. F.
,
Pape
,
L. A.
,
Gaca
,
C.
,
Sechtem
,
U.
,
Lenferink
,
S.
,
Deutsch
,
H. J.
,
Diedrichs
,
H.
,
Marcos y Robles
,
J.
,
Llovet
,
A.
,
Gilon
,
D.
,
Das
,
S. K.
,
Armstrong
,
W. F.
,
Deeb
,
G. M.
, and
Eagle
,
K. A.
,
2000
, “
The International Registry of Acute Aortic Dissection (IRAD)New Insights Into an Old Disease
,”
JAMA
,
283
(
7
), pp.
897
903
.10.1001/jama.283.7.897
6.
Dormand
,
H.
, and
Mohiaddin
,
R. H.
,
2013
, “
Cardiovascular Magnetic Resonance in Marfan Syndrome
,”
J. Cardiovasc. Magn. Reson.
,
15
(
1
), p.
33
.10.1186/1532-429X-15-33
7.
Farotto
,
D.
,
Segers
,
P.
,
Meuris
,
B.
,
Vander Sloten
,
J.
, and
Famaey
,
N.
,
2018
, “
The Role of Biomechanics in Aortic Aneurysm Management: Requirements, Open Problems and Future Prospects
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
295
307
.10.1016/j.jmbbm.2017.08.019
8.
Chin
,
A. S.
,
Willemink
,
M. J.
,
Kino
,
A.
,
Hinostroza
,
V.
,
Sailer
,
A. M.
,
Fischbein
,
M. P.
,
Mitchell
,
R. S.
,
Berry
,
G. J.
,
Miller
,
D. C.
, and
Fleischmann
,
D.
,
2018
, “
Acute Limited Intimal Tears of the Thoracic Aorta
,”
J. Am. Coll. Cardiol.
,
71
(
24
), pp.
2773
2785
.10.1016/j.jacc.2018.03.531
9.
Wenstrup
,
R. J.
,
Meyer
,
R. A.
,
Lyle
,
J. S.
,
Hoechstetter
,
L.
,
Rose
,
P. S.
,
Levy
,
H. P.
, and
Francomano
,
C. A.
,
2002
, “
Prevalence of Aortic Root Dilation in the Ehlers-Danlos Syndrome
,”
Genet. Med.
,
4
(
3
), pp.
112
117
.10.1097/00125817-200205000-00003
10.
Angouras
,
D. C.
,
Kritharis
,
E. P.
, and
Sokolis
,
D. P.
,
2019
, “
Regional Distribution of Delamination Strength in Ascending Thoracic Aortic Aneurysms
,”
J. Mech. Behav. Biomed. Mater.
,
98
, pp.
58
70
.10.1016/j.jmbbm.2019.06.001
11.
Manopoulos
,
C.
,
Karathanasis
,
I.
,
Kouerinis
,
I.
,
Angouras
,
D. C.
,
Lazaris
,
A.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2018
, “
Identification of Regional/Layer Differences in Failure Properties and Thickness as Important Biomechanical Factors Responsible for the Initiation of Aortic Dissections
,”
J. Biomech.
,
80
, pp.
102
110
.10.1016/j.jbiomech.2018.08.024
12.
Sassani
,
S. G.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer- and Region-Specific Material Characterization of Ascending Thoracic Aortic Aneurysms by Microstructure-Based Models
,”
J. Biomech.
,
48
(
14
), pp.
3757
3765
.10.1016/j.jbiomech.2015.08.028
13.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
14.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Boussias
,
S.
,
Demis
,
A.
,
Iliopoulos
,
C. D.
, and
Sokolis
,
D. P.
,
2013
, “
Biomechanical Properties and Histological Structure of Sinus of Valsalva Aneurysms in Relation to Age and Region
,”
J. Biomech.
,
46
(
5
), pp.
931
940
.10.1016/j.jbiomech.2012.12.004
15.
Kritharis
,
E. P.
,
Iliopoulos
,
D. C.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2014
, “
Effects of Aneurysm on the Mechanical Properties and Histologic Structure of Aortic Sinuses
,”
Ann. Thorac. Surg.
,
98
(
1
), pp.
72
79
.10.1016/j.athoracsur.2014.03.016
16.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Lampropoulos
,
K. M.
,
Papadodima
,
S. A.
, and
Iliopoulos
,
D. C.
,
2012
, “
Biomechanical Response of Ascending Thoracic Aortic Aneurysms: Association With Structural Remodelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
231
248
.10.1080/10255842.2010.522186
17.
Ferrara
,
A.
,
Morganti
,
S.
,
Totaro
,
P.
,
Mazzola
,
A.
, and
Auricchio
,
F.
,
2016
, “
Human Dilated Ascending Aorta: Mechanical Characterization Via Uniaxial Tensile Tests
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
257
271
.10.1016/j.jmbbm.2015.08.021
18.
Sommer
,
G.
,
Gasser
,
T. C.
,
Regitnig
,
P.
,
Auer
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Dissection Properties of the Human Aortic Media: An Experimental Study
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021007
.10.1115/1.2898733
19.
Sommer
,
G.
,
Sherifova
,
S.
,
Oberwalder
,
P. J.
,
Dapunt
,
O. E.
,
Ursomanno
,
P. A.
,
DeAnda
,
A.
,
Griffith
,
B. E.
, and
Holzapfel
,
G. A.
,
2016
, “
Mechanical Strength of Aneurysmatic and Dissected Human Thoracic Aortas at Different Shear Loading Modes
,”
J. Biomech.
,
49
(
12
), pp.
2374
2382
.10.1016/j.jbiomech.2016.02.042
20.
Pichamuthu
,
J. E.
,
Phillippi
,
J. A.
,
Cleary
,
D. A.
,
Chew
,
D. W.
,
Hempel
,
J.
,
Vorp
,
D. A.
, and
Gleason
,
T. G.
,
2013
, “
Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype
,”
Ann. Thorac. Surg.
,
96
(
6
), pp.
2147
2154
.10.1016/j.athoracsur.2013.07.001
21.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.10.1016/S0003-4975(02)04711-2
22.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Mannion
,
A.
,
Mookhoek
,
A.
,
Wisneski
,
A.
,
Guccione
,
J. M.
,
Hope
,
M. D.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2013
, “
Biomechanical Properties of Human Ascending Thoracic Aortic Aneurysms
,”
Ann. Thorac. Surg.
,
96
(
1
), pp.
50
58
.10.1016/j.athoracsur.2013.03.094
23.
Babu
,
A. R.
,
Byju
,
A. G.
, and
Gundiah
,
N.
,
2015
, “
Biomechanical Properties of Human Ascending Thoracic Aortic Dissections
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081013
.10.1115/1.4030752
24.
Deplano
,
V.
,
Boufi
,
M.
,
Gariboldi
,
V.
,
Loundou
,
A. D.
,
D'Journo
,
X. B.
,
Cautela
,
J.
,
Djemli
,
A.
, and
Alimi
,
Y. S.
,
2019
, “
Mechanical Characterisation of Human Ascending Aorta Dissection
,”
J. Biomech.
,
94
, pp.
138
146
.10.1016/j.jbiomech.2019.07.028
25.
Martin
,
C.
,
Sun
,
W.
,
Pham
,
T.
, and
Elefteriades
,
J.
,
2013
, “
Predictive Biomechanical Analysis of Ascending Aortic Aneurysm Rupture Potential
,”
Acta Biomater.
,
9
(
12
), pp.
9392
9400
.10.1016/j.actbio.2013.07.044
26.
Martin
,
C.
,
Sun
,
W.
, and
Elefteriades
,
J.
,
2015
, “
Patient-Specific Finite Element Analysis of Ascending Aorta Aneurysms
,”
Am. J. Physiol. Heart Circ. Physiol.
,
308
(
10
), pp.
H1306
H1316
.10.1152/ajpheart.00908.2014
27.
Okamoto
,
R. J.
,
Xu
,
H.
,
Kouchoukos
,
N. T.
,
Moon
,
M. R.
, and
Sundt
,
T. M.
, III
,
2003
, “
The Influence of Mechanical Properties on Wall Stress and Distensibility of the Dilated Ascending Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
3
), pp.
842
850
.10.1016/S0022-5223(03)00728-1
28.
Pham
,
T.
,
Martin
,
C.
,
Elefteriades
,
J.
, and
Sun
,
W.
,
2013
, “
Biomechanical Characterization of Ascending Aortic Aneurysm With Concomitant Bicuspid Aortic Valve and Bovine Aortic Arch
,”
Acta Biomater.
,
9
(
8
), pp.
7927
7936
.10.1016/j.actbio.2013.04.021
29.
Doyle
,
B. J.
,
Norman
,
P. E.
,
Hoskins
,
P. R.
,
Newby
,
D. E.
, and
Dweck
,
M. R.
,
2018
, “
Wall Stress and Geometry of the Thoracic Aorta in Patients With Aortic Valve Disease
,”
Ann. Thorac. Surg.
,
105
(
4
), pp.
1077
1085
.10.1016/j.athoracsur.2017.11.061
30.
Chandra
,
S.
,
Gnanaruban
,
V.
,
Riveros
,
F.
,
Rodriguez
,
J. F.
, and
Finol
,
E. A.
,
2016
, “
A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
101005
.10.1115/1.4034425
31.
Miller
,
K.
, and
Lu
,
J.
,
2013
, “
On the Prospect of Patient-Specific Biomechanics Without Patient-Specific Properties of Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
154
166
.10.1016/j.jmbbm.2013.01.013
32.
Singh
,
S. D.
,
Xu
,
X. Y.
,
Pepper
,
J. R.
,
Treasure
,
T.
, and
Mohiaddin
,
R. H.
,
2015
, “
Biomechanical Properties of the Marfan's Aortic Root and Ascending Aorta Before and After Personalised External Aortic Root Support Surgery
,”
Med. Eng. Phys.
,
37
(
8
), pp.
759
766
.10.1016/j.medengphy.2015.05.010
33.
Singh
,
S. D.
,
Xu
,
X. Y.
,
Pepper
,
J. R.
,
Izgi
,
C.
,
Treasure
,
T.
, and
Mohiaddin
,
R. H.
,
2016
, “
Effects of Aortic Root Motion on Wall Stress in the Marfan Aorta Before and After Personalised Aortic Root Support (PEARS) Surgery
,”
J. Biomech.
,
49
(
10
), pp.
2076
2084
.10.1016/j.jbiomech.2016.05.011
34.
Trabelsi
,
O.
,
Davis
,
F. M.
,
Rodriguez-Matas
,
J. F.
,
Duprey
,
A.
, and
Avril
,
S.
,
2015
, “
Patient Specific Stress and Rupture Analysis of Ascending Thoracic Aneurysms
,”
J. Biomech.
,
48
(
10
), pp.
1836
1843
.10.1016/j.jbiomech.2015.04.035
35.
Nathan
,
D. P.
,
Xu
,
C.
,
Gorman
,
J. H.
, III
,
Fairman
,
R. M.
,
Bavaria
,
J. E.
,
Gorman
,
R. C.
,
Chandran
,
K. B.
, and
Jackson
,
B. M.
,
2011
, “
Pathogenesis of Acute Aortic Dissection: A Finite Element Stress Analysis
,”
Ann. Thorac. Surg.
,
91
(
2
), pp.
458
463
.10.1016/j.athoracsur.2010.10.042
36.
Nathan
,
D. P.
,
Xu
,
C.
,
Plappert
,
T.
,
Desjardins
,
B.
,
Gorman
,
J. H.
, III
,
Bavaria
,
J. E.
,
Gorman
,
R. C.
,
Chandran
,
K. B.
, and
Jackson
,
B. M.
,
2011
, “
Increased Ascending Aortic Wall Stress in Patients With Bicuspid Aortic Valves
,”
Ann. Thorac. Surg.
,
92
(
4
), pp.
1384
1389
.10.1016/j.athoracsur.2011.04.118
37.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
,
Elefteriades
,
J. A.
, and
Sun
,
W.
,
2017
, “
A Machine Learning Approach to Investigate the Relationship Between Shape Features and Numerically Predicted Risk of Ascending Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1519
1533
.10.1007/s10237-017-0903-9
38.
Xuan
,
Y.
,
Wang
,
Z.
,
Liu
,
R.
,
Haraldsson
,
H.
,
Hope
,
M. D.
,
Saloner
,
D. A.
,
Guccione
,
J. M.
,
Ge
,
L.
, and
Tseng
,
E.
,
2018
, “
Wall Stress on Ascending Thoracic Aortic Aneurysms With Bicuspid Compared With Tricuspid Aortic Valve
,”
J. Thorac. Cardiovasc. Surg.
,
156
(
2
), pp.
492
500
.10.1016/j.jtcvs.2018.03.004
39.
Emerel
,
L.
,
Thunes
,
J.
,
Kickliter
,
T.
,
Billaud
,
M.
,
Phillippi
,
J. A.
,
Vorp
,
D. A.
,
Maiti
,
S.
, and
Gleason
,
T. G.
,
2019
, “
Predissection-Derived Geometric and Distensibility Indices Reveal Increased Peak Longitudinal Stress and Stiffness in Patients Sustaining Acute Type A Aortic Dissection: Implications for Predicting Dissection
,”
J. Thorac. Cardiovasc. Surg.
,
158
(
2
), pp.
355
363
.10.1016/j.jtcvs.2018.10.116
40.
Plonek
,
T.
,
Zak
,
M.
,
Rylski
,
B.
,
Berezowski
,
M.
,
Czerny
,
M.
,
Beyersdorf
,
F.
,
Jasinski
,
M.
, and
Filipiak
,
J.
,
2018
, “
Wall Stress Correlates With Intimal Entry Tear Localization in Type A Aortic Dissection
,”
Interact. Cardiovasc. Thorac. Surg.
,
27
(
6
), pp.
797
801
.10.1093/icvts/ivy158
41.
Subramaniam
,
D. R.
,
Stoddard
,
W. A.
,
Mortensen
,
K. H.
,
Ringgaard
,
S.
,
Trolle
,
C.
,
Gravholt
,
C. H.
,
Gutmark
,
E. J.
,
Mylavarapu
,
G.
,
Backeljauw
,
P. F.
, and
Gutmark-Little
,
I.
,
2017
, “
Continuous Measurement of Aortic Dimensions in Turner Syndrome: A Cardiovascular Magnetic Resonance Study
,”
J. Cardiovasc. Magn. Reson.
,
19
(
1
), pp.
20
20
.10.1186/s12968-017-0336-8
42.
Krishnan
,
K.
,
Ge
,
L.
,
Haraldsson
,
H.
,
Hope
,
M. D.
,
Saloner
,
D. A.
,
Guccione
,
J. M.
, and
Tseng
,
E. E.
,
2015
, “
Ascending Thoracic Aortic Aneurysm Wall Stress Analysis Using Patient-Specific Finite Element Modeling of In Vivo Magnetic Resonance Imaging
,”
Interact. Cardiovasc. Thorac. Surg.
,
21
(
4
), pp.
471
480
.10.1093/icvts/ivv186
43.
Grosland
,
N. M.
,
Shivanna
,
K. H.
,
Magnotta
,
V. A.
,
Kallemeyn
,
N. A.
,
DeVries
,
N. A.
,
Tadepalli
,
S. C.
, and
Lisle
,
C.
,
2009
, “
IA-FEMesh: An Open-Source, Interactive, Multiblock Approach to Anatomic Finite Element Model Development
,”
Comput. Methods Programs Biomed.
,
94
(
1
), pp.
96
107
.10.1016/j.cmpb.2008.12.003
44.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Tsamis
,
A.
,
D'Amore
,
A.
,
Raffa
,
G. M.
,
Pilato
,
M.
,
Scardulla
,
C.
,
Watkins
,
S. C.
,
Wagner
,
W. R.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2016
, “
Constitutive Modeling of Ascending Thoracic Aortic Aneurysms Using Microstructural Parameters
,”
Med. Eng. Phys.
,
38
(
2
), pp.
121
130
.10.1016/j.medengphy.2015.11.001
45.
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2009
, “
A Frame-Invariant Formulation of Fung Elasticity
,”
J. Biomech.
,
42
(
6
), pp.
781
785
.10.1016/j.jbiomech.2009.01.015
46.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
,
2003
, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High in-Plane Shear
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
372
380
.10.1115/1.1572518
47.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
48.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.10.1115/1.1695572
49.
Jia
,
Y.
,
Qiao
,
Y.
,
Ricardo Argueta-Morales
,
I.
,
Maung
,
A.
,
Norfleet
,
J.
,
Bai
,
Y.
,
Divo
,
E.
,
Kassab
,
A. J.
, and
DeCampli
,
W. M.
,
2017
, “
Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
101003
.10.1115/1.4037400
50.
Aycock
,
K. I.
,
Campbell
,
R. L.
,
Manning
,
K. B.
,
Sastry
,
S. P.
,
Shontz
,
S. M.
,
Lynch
,
F. C.
, and
Craven
,
B. A.
,
2014
, “
A Computational Method for Predicting Inferior Vena Cava Filter Performance on a Patient-Specific Basis
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081003
.10.1115/1.4027612
51.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
52.
Rylski
,
B.
,
Bavaria
,
J. E.
,
Beyersdorf
,
F.
,
Branchetti
,
E.
,
Desai
,
N. D.
,
Milewski
,
R. K.
,
Szeto
,
W. Y.
,
Vallabhajosyula
,
P.
,
Siepe
,
M.
, and
Kari
,
F. A.
,
2014
, “
Type A Aortic Dissection in Marfan Syndrome
,”
Circulation
,
129
(
13
), pp.
1381
1386
.10.1161/CIRCULATIONAHA.113.005865
53.
Oderich
,
G. S.
,
Panneton
,
J. M.
,
Bower
,
T. C.
,
Lindor
,
N. M.
,
Cherry
,
K. J.
, Jr.
,
Noel
,
A. A.
,
Kalra
,
M.
,
Sullivan
,
T.
, and
Gloviczki
,
P.
,
2005
, “
The Spectrum, Management and Clinical Outcome of Ehlers-Danlos Syndrome Type IV: A 30-Year Experience
,”
J. Vasc. Surg.
,
42
(
1
), pp.
98
106
.10.1016/j.jvs.2005.03.053
54.
El-Hamamsy
,
I.
, and
Yacoub
,
M. H.
,
2009
, “
Cellular and Molecular Mechanisms of Thoracic Aortic Aneurysms
,”
Nat. Rev. Cardiol.
,
6
(
12
), pp.
771
786
.10.1038/nrcardio.2009.191
55.
Cavinato
,
C.
,
Molimard
,
J.
,
Curt
,
N.
,
Campisi
,
S.
,
Orgéas
,
L.
, and
Badel
,
P.
,
2019
, “
Does the Knowledge of the Local Thickness of Human Ascending Thoracic Aneurysm Walls Improve Their Mechanical Analysis?
,”
Front Bioeng. Biotechnol.
,
7
, p.
169
.10.3389/fbioe.2019.00169
56.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
57.
Chung
,
T. K.
,
da Silva
,
E. S.
, and
Raghavan
,
S. M. L.
,
2017
, “
Does Elevated Wall Tension Cause Aortic Aneurysm Rupture? Investigation Using a Subject-Specific Heterogeneous Model
,”
J. Biomech.
,
64
, pp.
164
171
.10.1016/j.jbiomech.2017.09.041
58.
Cosentino
,
F.
,
Agnese
,
V.
,
Raffa
,
G. M.
,
Gentile
,
G.
,
Bellavia
,
D.
,
Zingales
,
M.
,
Pilato
,
M.
, and
Pasta
,
S.
,
2019
, “
On the Role of Material Properties in Ascending Thoracic Aortic Aneurysms
,”
Comput. Biol. Med.
,
109
, pp.
70
78
.10.1016/j.compbiomed.2019.04.022
59.
García–Herrera
,
C. M.
,
Celentano
,
D. J.
, and
Herrera
,
E. A.
,
2017
, “
Modelling and Numerical Simulation of the In Vivo Mechanical Response of the Ascending Aortic Aneurysm in Marfan Syndrome
,”
Med. Biol. Eng. Comput.
,
55
(
3
), pp.
419
428
.10.1007/s11517-016-1524-7
60.
Pasta
,
S.
,
Agnese
,
V.
,
Di Giuseppe
,
M.
,
Gentile
,
G.
,
Raffa
,
G. M.
,
Bellavia
,
D.
, and
Pilato
,
M.
,
2017
, “
In Vivo Strain Analysis of Dilated Ascending Thoracic Aorta by ECG-Gated CT Angiographic Imaging
,”
Ann. Biomed. Eng.
,
45
(
12
), pp.
2911
2920
.10.1007/s10439-017-1915-4
61.
Lindeman
,
J. H. N.
,
Ashcroft
,
B. A.
,
Beenakker
,
J.-W. M.
,
van Es
,
M.
,
Koekkoek
,
N. B. R.
,
Prins
,
F. A.
,
Tielemans
,
J. F.
,
Abdul-Hussien
,
H.
,
Bank
,
R. A.
, and
Oosterkamp
,
T. H.
,
2010
, “
Distinct Defects in Collagen Microarchitecture Underlie Vessel-Wall Failure in Advanced Abdominal Aneurysms and Aneurysms in Marfan Syndrome
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
2
), pp.
862
865
.10.1073/pnas.0910312107
62.
Tsamis
,
A.
,
Krawiec
,
J. T.
, and
Vorp
,
D. A.
,
2013
, “
Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review
,”
J. R. Soc. Interface
,
10
(
83
), p.
20121004
.10.1098/rsif.2012.1004
63.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall
,”
J. Biomech.
,
45
(
5
), pp.
762
771
.10.1016/j.jbiomech.2011.11.016
64.
Nistri
,
S.
,
Porciani
,
M. C.
,
Attanasio
,
M.
,
Abbate
,
R.
,
Gensini
,
G. F.
, and
Pepe
,
G.
,
2012
, “
Association of Marfan Syndrome and Bicuspid Aortic Valve: Frequency and Outcome
,”
Int. J. Cardiol.
,
155
(
2
), pp.
324
325
.10.1016/j.ijcard.2011.12.009
65.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2012
, “
Effect of Aneurysm on the Mechanical Dissection Properties of the Human Ascending Thoracic Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
2
), pp.
460
467
.10.1016/j.jtcvs.2011.07.058
66.
Yu
,
X.
,
Suki
,
B.
, and
Zhang
,
Y.
,
2020
, “
Avalanches and Power Law Behavior in Aortic Dissection Propagation
,”
Sci. Adv.
,
6
(
21
), p.
eaaz1173
.10.1126/sciadv.aaz1173
67.
Wisneski
,
A. D.
,
Mookhoek
,
A.
,
Chitsaz
,
S.
,
Hope
,
M. D.
,
Guccione
,
J. M.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2014
, “
Patient-Specific Finite Element Analysis of Ascending Thoracic Aortic Aneurysm
,”
J. Heart Valve Dis.
,
23
(
6
), pp.
765
772.
https://www.icr-heart.com/?cid=3951
68.
Eikendal
,
A. L. M.
,
Blomberg
,
B. A.
,
Haaring
,
C.
,
Saam
,
T.
,
van der Geest
,
R. J.
,
Visser
,
F.
,
Bots
,
M. L.
,
den Ruijter
,
H. M.
,
Hoefer
,
I. E.
, and
Leiner
,
T.
,
2016
, “
3D Black Blood VISTA Vessel Wall Cardiovascular Magnetic Resonance of the Thoracic Aorta Wall in Young, Healthy Adults: Reproducibility and Implications for Efficacy Trial Sample Sizes: A Cross-Sectional Study
,”
J. Cardiovasc. Magn. Reson.
,
18
(
1
), p.
20
.10.1186/s12968-016-0237-2
69.
MacLean
,
N. F.
,
Dudek
,
N. L.
, and
Roach
,
M. R.
,
1999
, “
The Role of Radial Elastic Properties in the Development of Aortic Dissections
,”
J. Vasc. Surg.
,
29
(
4
), pp.
703
710
.10.1016/S0741-5214(99)70317-4
70.
Ferrara
,
A.
, and
Pandolfi
,
A.
,
2008
, “
Numerical Modelling of Fracture in Human Arteries
,”
Comput. Methods Biomech. Biomed. Eng
,
11
(
5
), pp.
553
567
.10.1080/10255840701771743
71.
Wang
,
L.
,
Roper
,
S. M.
,
Hill
,
N. A.
, and
Luo
,
X.
,
2017
, “
Propagation of Dissection in a Residually-Stressed Artery Model
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
139
149
.10.1007/s10237-016-0806-1
72.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
73.
Beller
,
C. J.
,
Labrosse
,
M. R.
,
Thubrikar
,
M. J.
, and
Robicsek
,
F.
,
2004
, “
Role of Aortic Root Motion in the Pathogenesis of Aortic Dissection
,”
Circulation
,
109
(
6
), pp.
763
769
.10.1161/01.CIR.0000112569.27151.F7
74.
Pasta
,
S.
,
Agnese
,
V.
,
Gallo
,
A.
,
Cosentino
,
F.
,
Di Giuseppe
,
M.
,
Gentile
,
G.
,
Raffa
,
G. M.
,
Maalouf
,
J. F.
,
Michelena
,
H. I.
,
Bellavia
,
D.
,
Conaldi
,
P. G.
, and
Pilato
,
M.
,
2020
, “
Shear Stress and Aortic Strain Associations With Biomarkers of Ascending Thoracic Aortic Aneurysm
,”
Ann. Thorac. Surg.
, Epub.10.1016/j.athoracsur.2020.03.017
75.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurent
,
S.
,
Humphrey
,
J. D.
, and
Zidi
,
M.
,
2008
, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech.
,
41
(
12
), pp.
2618
2627
.10.1016/j.jbiomech.2008.06.022
76.
Malvindi
,
P. G.
,
Pasta
,
S.
,
Raffa
,
G. M.
, and
Livesey
,
S.
,
2016
, “
Computational Fluid Dynamics of the Ascending Aorta Before the Onset of Type A Aortic Dissection
,”
Eur. J. Cardiothorac. Surg.
,
51
(
3
), pp.
597
599
.10.1093/ejcts/ezw306
You do not currently have access to this content.