Abstract

Flow-induced hemolysis remains a concern for blood-contacting devices, and computer-based prediction of hemolysis could facilitate faster and more economical refinement of such devices. While evaluation of convergence of velocity fields obtained by computational fluid dynamics (CFD) simulations has become conventional, convergence of hemolysis calculations is also essential. In this paper, convergence of the power-law hemolysis model is compared for simple flows, including pathlines with exponentially increasing and decreasing stress, in gradually expanding and contracting Couette flows, in a sudden radial expansion and in the Food and Drug Administration (FDA) channel. In the exponential cases, convergence along a pathline required from one to tens of thousands of timesteps, depending on the exponent. Greater timesteps were required for rapidly increasing (large exponent) stress and for rapidly decreasing (small exponent) stress. Example pathlines in the Couette flows could be fit with exponential curves, and convergence behavior followed the trends identified from the exponential cases. More complex flows, such as in the radial expansion and the FDA channel, increase the likelihood of encountering problematic pathlines. For the exponential cases, comparison of converged hemolysis values with analytical solutions demonstrated that the error of the converged solution may exceed 10% for both rapidly decreasing and rapidly increasing stress.

References

1.
DeCesare
,
W.
,
Rath
,
C.
, and
Hufnagel
,
C.
,
1965
, “
Hemolytic Anemia of Mechanical Origin With Aortic-Valve Prosthesis
,”
New Engl. J. Med.
,
272
(
20
), pp.
1045
1050
.10.1056/NEJM196505202722003
2.
Case
,
R. B.
,
Ness
,
A. T.
,
Sarnoff
,
S. J.
, and
Stohlman
,
F.
, Jr.
,
1956
, “
Hemolytic Syndrome Following the Insertion of a Lucite Ball Valve Prosthesis Into the Cardiovascular System
,”
Circulation
,
13
(
4
), pp.
586
591
.10.1161/01.cir.13.4.586
3.
Mecozzi
,
G.
,
Milano
,
A. D.
,
De Carlo
,
M.
,
Sorrentino
,
F.
,
Pratali
,
S.
,
Nardi
,
C.
, and
Bortolotti
,
U.
,
2002
, “
Intravascular Hemolysis in Patients With New-Generation Prosthetic Heart Valves: A Prospective Study
,”
J. Thorac. Cardiovasc. Surg.
,
123
(
3
), pp.
550
556
.10.1067/mtc.2002.120337
4.
Forstrom
,
R. J.
,
1969
, “
A New Measure of Erythrocyte Membrane Strength—The Jet Fragility Test
,”
Ph.D. thesis
,
University of Minnesota, Department of Biomedical Engineering
,
Minneapolis, MN
.https://www.worldcat.org/title/new-measure-of-erythrocyte-membrane-strength-the-jet-fragility-test/oclc/17922519
5.
Blackshear
,
P. L. J.
,
Dorman
,
F. D.
, and
Steinbach
,
J. H.
,
1965
, “
Some Mechanical Effects That Influence Hemolysis
,”
Asaio J.
,
11
(
1
), pp.
112
117
.10.1097/00002480-196504000-00022
6.
Blackshear
,
P. L. J.
,
Dorman
,
F. D.
,
Steinbach
,
J. H.
,
Maybach
,
E. J.
,
Singh
,
A.
, and
Collingham
,
R. E.
,
1966
, “
Shear, Wall Interaction and Hemolysis
,”
Asaio J.
,
12
(
1
), pp.
113
120
.https://journals.lww.com/asaiojournal/Citation/1966/04000/SHEAR,_WALL_INTERACTION_AND_HEMOLYSIS.26.aspx
7.
Sallam
,
A. M.
, and
Hwang
,
N. H.
,
1984
, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
(
6
), pp.
783
797
.10.3233/BIR-1984-21605
8.
Rooney
,
J. A.
,
1970
, “
Hemolysis Near an ultrasonically pulsating gas bubble
,”
Science
,
169
(
3948
), pp.
869
871
.10.1126/science.169.3948.869
9.
Heuser
,
G.
, and
Opitz
,
R.
,
1980
, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
,
17
(
1–2
), pp.
17
24
.10.3233/BIR-1980-171-205
10.
Down
,
L. A.
,
Papavassiliou
,
D. V.
, and
O'Rear
,
E. A.
,
2011
, “
Significance of Extensional Stresses to Red Blood Cell Lysis in a Shearing Flow
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1632
1642
.10.1007/s10439-011-0262-0
11.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2018
, “
Characterization of Erythrocyte Membrane Tension for Hemolysis Prediction in Complex Flows
,”
Biomech. Model Mechanobiol.
,
17
(
3
), pp.
827
842
.10.1007/s10237-017-0995-2
12.
Lokhandwalla
,
M.
, and
Sturtevant
,
B.
,
2001
, “
Mechanical Haemolysis in Shock Wave Lithotripsy (SWL): I. Analysis of Cell Deformation Due to SWL Flow-Fields
,”
Phys. Med. Biol.
,
46
(
2
), pp.
413
437
.10.1088/0031-9155/46/2/310
13.
Yen
,
J.-H.
,
Chen
,
S.-F.
,
Chern
,
M.-K.
, and
Lu
,
P.-C.
,
2015
, “
The Effects of Extensional Stress on Red Blood Cell Hemolysis
,”
Biomed. Eng.: Appl., Basis Commun.
,
27
(
05
), p.
1550042
.10.4015/S1016237215500428
14.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2020
, “
Deformation of Human Red Blood Cells in Extensional Flow Through a Hyperbolic Contraction
,”
Biomech. Model Mechanobiol.
,
19
(
1
), pp.
251
261
.10.1007/s10237-019-01208-3
15.
Jones
,
S. A.
,
1995
, “
A Relationship Between Reynolds Stresses and Viscous Dissipation: Implications to Red Cell Damage
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
21
28
.10.1007/BF02368297
16.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2019
, “
Evaluation of Energy Dissipation Rate as a Predictor of Mechanical Blood Damage
,”
Artif. Organs
,
43
(
7
), pp.
666
–6
76
.10.1111/aor.13418
17.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses–in Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.10.1177/039139889001300507
18.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
,
2005
, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.10.1111/j.1525-1594.2005.29089.x
19.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
20.
Faghih
,
M. M.
, and
Keith Sharp
,
M.
,
2016
, “
Extending the Power-Law Hemolysis Model to Complex Flows
,”
ASME J. Biomech. Eng.
,
138
(
12
), p. 12450410.1115/1.4034786
21.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2019
, “
Modeling and Prediction of Flow-Induced Hemolysis: A Review
,”
Biomech. Model Mechanobiol.
,
18
(
4
), pp.
845
881
.10.1007/s10237-019-01137-1
22.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.10.1111/j.1525-1594.2004.00015.x
23.
Garon
,
A.
, and
Farinas
,
M. I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.10.1111/j.1525-1594.2004.00026.x
24.
Zhang
,
T.
,
Taskin
,
M. E.
,
Fang
,
H.-B.
,
Pampori
,
A.
,
Jarvik
,
R.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood-Shearing Devices
,”
Artif. Organs
,
35
(
12
), pp.
1180
1186
.10.1111/j.1525-1594.2011.01243.x
25.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Benedetto
,
G. D.
, and
Gaudio
,
C. D.
,
2005
, “
A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Model Mechanobiol.
,
4
(
4
), pp.
249
260
.10.1007/s10237-005-0005-y
26.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
Asaio J.
,
58
(
4
), pp.
363
372
.10.1097/MAT.0b013e318254833b
27.
Hariharan
,
P.
,
D'Souza
,
G.
,
Horner
,
M.
,
Malinauskas
,
R. A.
, and
Myers
,
M. R.
,
2015
, “
Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
094501
.10.1115/1.4030823
28.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, UK
.
29.
Jithin
,
M.
,
Mishra
,
A.
,
De
,
A.
, and
Das
,
M. K.
,
2016
, “
Numerical Study of Bifurcating Flow Through Sudden Expansions: Effect of Divergence and Geometric Asymmetry
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
4
), pp.
259
273
.10.1007/s12572-016-0175-0
30.
Hawa
,
T.
, and
Rusak
,
Z.
,
2001
, “
The Dynamics of a Laminar Flow in a Symmetric Channel With a Sudden Expansion
,”
J. Fluid Mech.
,
436
, pp.
283
320
.10.1017/S0022112001004086
31.
Raben
,
J. S.
,
Hariharan
,
P.
,
Robinson
,
R.
,
Malinauskas
,
R.
, and
Vlachos
,
P. P.
,
2016
, “
Time-Resolved Particle Image Velocimetry Measurements With Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model
,”
Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
7
22
.10.1007/s13239-015-0251-9
32.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2019
, “
On Eulerian Versus Lagrangian Models of Mechanical Blood Damage and the Linearized Damage Function
,”
J. Artif. Organs
,
43
(
7
), pp.
681
687
.10.1111/aor.13423
33.
Chen
,
Y.
, and
Sharp
,
M. K.
,
2011
, “
A Strain-Based Flow-Induced Hemolysis Prediction Model Calibrated by In Vitro Erythrocyte Deformation Measurements
,”
Artif. Organs
,
35
(
2
), pp.
145
156
.10.1111/j.1525-1594.2010.01050.x
34.
Chen
,
Y.
,
Kent
,
T. L.
, and
Sharp
,
M. K.
,
2013
, “
Testing of Models of Flow-Induced Hemolysis in Blood Flow Through Hypodermic Needles
,”
Artif. Organs
,
37
(
3
), pp.
256
266
.10.1111/j.1525-1594.2012.01569.x
35.
Vitale
,
F.
,
Nam
,
J.
,
Turchetti
,
L.
,
Behr
,
M.
,
Raphael
,
R.
,
Annesini
,
M. C.
, and
Pasquali
,
M.
,
2014
, “
A Multiscale, Biophysical Model of Flow-Induced Red Blood Cell Damage
,”
Aiche J.
,
60
(
4
), pp.
1509
1516
.10.1002/aic.14318
36.
Ezzeldin
,
H. M.
,
de Tullio
,
M. D.
,
Vanella
,
M.
,
Solares
,
S. D.
, and
Balaras
,
E.
,
2015
, “
A Strain-Based Model for Mechanical Hemolysis Based on a Coarse-Grained Red Blood Cell Model
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1398
1409
.10.1007/s10439-015-1273-z
37.
Sohrabi
,
S.
, and
Liu
,
Y.
,
2017
, “
A Cellular Model of Shear-Induced Hemolysis
,”
Artif. Organs
,
41
(
9
), pp.
E80
E91
.10.1111/aor.12832
38.
Turek
,
V.
,
2019
, “
Improving Performance of Simplified Computational Fluid Dynamics Models Via Symmetric Successive Overrelaxation
,”
Energies
,
12
(
12
), p.
2438
.10.3390/en12122438
You do not currently have access to this content.