Abstract

A magnetic resonance (MR) compatible ergometer has been developed to study contracting lower limb muscles during acquisition of MR spectroscopy data, a technique to noninvasively measure metabolic energy in muscle tissue. Current active and passive MR-compatible ergometer designs lack torque or velocity control to allow precise mechanical measurements during isotonic and isokinetic contractions; incorporating load and velocity controllers while maintaining MR-compatibility is the main challenge. Presented in this paper is the design and evaluation of an MR-compatible ergometer designed to control knee torque or velocity up to 420 N·m and 270 deg/s and is able to operate in a 3 Tesla magnetic field. The ergometer comprising of a passive component with no electronics or ferrous materials is located inside the bore of the scanner. The active component with the electronics and actuator located outside of the magnetic field in an adjacent room. The active components connect to the passive components via a cable that passes through the waveguide, a hole in the wall of the scanner room. System evaluations were performed and human subject evaluations were performed that measured the mechanical performance and show the mean percent errors below 9% in isotonic and 2% in isokinetic conditions.

References

1.
Yu
,
N.
,
Gassert
,
R.
, and
Riener
,
R.
,
2011
, “
Mutual Interferences and Design Principles for Mechatronic Devices in Magnetic Resonance Imaging
,”
Int J Comput. Assisted Radiol. Surg.
,
6
(
4
), pp.
473
488
.10.1007/s11548-010-0528-2
2.
Chance
,
B.
,
Eleff
,
S.
, and
Leigh
,
J.
,
1980
, “
Noninvasive, Nondestructive Approaches to Cell Bioenergetics
,”
Proc Natl. Acad. Sci.
,
77
(
12
), pp.
7430
7434
.10.1073/pnas.77.12.7430
3.
Ryschon
,
T. W.
,
Fowler
,
M. D.
,
Arai
,
A. A.
,
Wysong
,
R. E.
,
Leighton
,
S. B.
,
Clem Tr
,
S.
, and
Balaban
,
R. S.
,
1995
, “
A Multimode Dynamometer for In Vivo MRS Studies of Human Skeletal Muscle
,”
J Appl. Physiol.
,
79
(
6
), pp.
2139
2147
.10.1152/jappl.1995.79.6.2139
4.
Bangsbo
,
J.
,
Johansen
,
L.
,
Quistorff
,
B.
, and
Saltin
,
B.
,
1993
, “
NMR and Analytic Biochemical Evaluation of CRP and Nucleotides in the Human Calf During Muscle Contraction
,”
J Appl. Physiol.
,
74
(
4
), pp.
2034
2039
.10.1152/jappl.1993.74.4.2034
5.
Miller
,
R.
,
Boska
,
M. D.
,
Moussavi
,
R.
,
Carson
,
P.
, and
Weiner
,
M.
,
1988
, “
31p Nuclear Magnetic Resonance Studies of High Energy Phosphates and pH in Human Muscle Fatigue: Comparison of Aerobic and Anaerobic Exercise
,”
J Clin. Invest.
,
81
(
4
), pp.
1190
1196
.10.1172/JCI113434
6.
Francescato
,
M. P.
, and
Cettolo
,
V.
,
2001
, “
Two-Pedal Ergometer for In Vivo MRS Studies of Human Calf Muscles
,”
Magn. Reson. Med.
,
46
(
5
), pp.
1000
1005
.10.1002/mrm.1287
7.
Smith
,
S. A.
,
Montain
,
S. J.
,
Matott
,
R. P.
,
Zientara
,
G. P.
,
Jolesz
,
F. A.
, and
Fielding
,
R. A.
,
1998
, “
Creatine Supplementation and Age Influence Muscle Metabolism During Exercise
,”
J Appl. Physiol.
,
85
(
4
), pp.
1349
1356
.10.1152/jappl.1998.85.4.1349
8.
Layec
,
G.
,
Bringard
,
A.
,
Vilmen
,
C.
,
Micallef
,
J.-P.
,
Le Fur
,
Y.
,
Perrey
,
S.
,
Cozzone
,
P. J.
, and
Bendahan
,
D.
,
2008
, “
Accurate Work-Rate Measurements During In Vivo MRS Studies of Exercising Human Quadriceps
,”
Magn. Reson. Mater. Phys., Biol. Med.
,
21
(
3
), pp.
227
235
.10.1007/s10334-008-0117-3
9.
Yoshida
,
T.
,
Watari
,
H.
, and
Tagawa
,
K.
,
1996
, “
Effects of Active and Passive Recoveries on Splitting of the Inorganic Phosphate Peak Determined by 31p-Nuclear Magnetic Resonance Spectroscopy
,”
NMR Biomed.
,
9
(
1
), pp.
13
19
.10.1002/(SICI)1099-1492(199602)9:1<13::AID-NBM394>3.0.CO;2-9
10.
Quistorff
,
B.
,
Nielsen
,
S.
,
Thomsen
,
C.
,
Jensen
,
K. E.
, and
Henriksen
,
O.
,
1990
, “
A Simple Calf Muscle Ergometer for Use in a Standard Whole-Body MR Scanner
,”
Magn. Reson. Med.
,
13
(
3
), pp.
444
449
.10.1002/mrm.1910130311
11.
Fontes
,
E. B.
,
Okano
,
A. H.
,
De Guio
,
F.
,
Schabort
,
E. J.
,
Min
,
L. L.
,
Basset
,
F. A.
,
Stein
,
D. J.
, and
Noakes
,
T. D.
,
2015
, “
Brain Activity and Perceived Exertion During Cycling Exercise: An FMRI Study
,”
Br. J. Sports Med
,
49
(
8
), pp.
556
560
.10.1136/bjsports-2012-091924
12.
Gusso
,
S.
,
Salvador
,
C.
,
Hofman
,
P.
,
Cutfield
,
W.
,
Baldi
,
J. C.
,
Taberner
,
A.
, and
Nielsen
,
P.
,
2012
, “
Design and Testing of an MRI-Compatible Cycle Ergometer for Non-Invasive Cardiac Assessments During Exercise
,”
Biomed. Eng. Online
,
11
(
1
), p.
13
.10.1186/1475-925X-11-13
13.
Shellock
,
F. G.
,
2000
, “
Radiofrequency Energy-Induced Heating During MR Procedures: A Review
,”
J Magn. Reson. Imag.
,
12
(
1
), pp.
30
36
.10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S
14.
National Center for Health Statistics
,
2001
, “
Data Table of Stature-for-Age Charts
,” National Center for Health Statistics, Atlanta, GA, accessed Mar. 19, 2016, https://www.cdc.gov/growthcharts/html_charts/statage.html
15.
Hawks, J.,
2011
, “
Predicting Stature From Bone Measurements
,” University of Wisconsin–Madison, Madison, WI, accessed Mar. 19, 2016, http://johnhawks.net/explainer/laboratory/predicting-stature.html
16.
Duyar
,
I.
, and
Pelin
,
C.
,
2003
, “
Body Height Estimation Based on Tibia Length in Different Stature Groups
,”
Am. J Phys. Anthropol.
,
122
(
1
), pp.
23
27
.10.1002/ajpa.10257
17.
Shimose
,
R.
,
Ushigome
,
N.
,
Tadano
,
C.
,
Sugawara
,
H.
,
Yona
,
M.
,
Matsunaga
,
A.
, and
Muro
,
M.
,
2014
, “
Increase in Rate of Force Development With Skin Cooling During Isometric Knee Extension
,”
J Electromyography Kinesiol.
,
24
(
6
), pp.
895
901
.10.1016/j.jelekin.2014.08.002
18.
Schimidt
,
H. L.
,
Machado
,
Á. S.
,
Vaz
,
M. A.
, and
Carpes
,
F. P.
,
2014
, “
Isometric Muscle Force, Rate of Force Development and Knee Extensor Neuromuscular Efficiency Asymmetries at Different Age Groups
,”
Rev. Bras Cineantropometria Desempenho Humano
,
16
(
3
), pp.
307
315
.10.5007/1980-0037.2014v16n3p307
You do not currently have access to this content.