Abstract

Exoskeletons are increasingly being used to treat gait pathologies. Many of these exoskeletons use a foot plate to actuate the foot, altering the effective stiffness of the foot. Stiffness of the biological foot and ankle plays an important role in the energy modulating function of the leg, so it is important to examine how a foot plate in and of itself impacts gait. Therefore, this study quantified how foot plates themselves alter the walking gait of 16 healthy young adults. The effect of the foot plate length was also examined through the use of two foot plates, one that ended at the metatarsals and one that extended past the toes, about 20% longer. Gait parameters examined included walking speed, step frequency, joint angles for the hip, knee, ankle, forefoot, and toe, ground reaction forces (GRF), and foot–ankle power. The most significant changes were caused by the full plate, which caused an average 13% decrease in the ankle range of motion (ROM) and a 23% decrease in forward GRF at push off. The shorter plate also decreased ankle ROM to a lesser degree. This indicates that the presence of a foot plate impacted foot and ankle kinematics. However, the presence of the tested foot plate had no effect on walking speed or hip or knee kinematics. This indicates that subjects were mostly able to compensate both kinematically and energetically via their foot and ankle for the increased foot stiffness due to the tested foot plate.

References

1.
Schröder
,
J.
,
Truijen
,
S.
,
Criekinge
,
T.
, and
Saeys
,
W.
,
2019
, “
Feasibility and Effectiveness of Repetitive Gait Training Early After Stroke: A Systematic Review and Meta-Analysis
,”
J. Rehabil. Med.
,
51
(
2
), pp.
78
88
.10.2340/16501977-2505
2.
Tefertiller
,
C.
,
Pharo
,
B.
,
Evans
,
N.
, and
Winchester
,
P.
,
2011
, “
Efficacy of Rehabilitation Robotics for Walking Training in Neurological Disorders: A Review
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
387
416
.10.1682/JRRD.2010.04.0055
3.
Schwartz
,
I.
, and
Meiner
,
Z.
,
2015
, “
Roboticassisted Gait Training in Neurological Patients: Who May Benefit?
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1260
1269
.10.1007/s10439-015-1283-x
4.
Miller
,
L. E.
,
Zimmermann
,
A. K.
, and
Herbert
,
W. G.
,
2016
, “
Clinical Effectiveness and Safety of Powered Exoskeleton-Assisted Walking in Patients With Spinal Cord Injury: Systematic Review With Metaanalysis
,”
Med. Devices Evidence Res.
,
9
, pp.
455
466
.10.2147/MDER.S103102
5.
Ellis
,
T. D.
,
Holt
,
K. G.
,
Hendron
,
K.
,
Bae
,
J.
,
O'Donnell
,
K.
,
Kudzia
,
P.
, and
Sloot
,
L. H.
,
2017
, “
A Soft Robotic Exosuit Improves Walking in Patients After Stroke
,”
Sci. Transl. Med.
,
9
(
400
), p.
eaai9084
.10.1126/scitranslmed.aai9084
6.
Lerner
,
Z. F.
,
Harvey
,
T. A.
, and
Lawson
,
J. L.
,
2019
, “
A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals With Cerebral Palsy
,”
Ann. Biomed. Eng.
,
47
(
6
), pp.
1345
1356
.10.1007/s10439-019-02237-w
7.
TalatyEsquenazi
,
M. A.
, and
Briceno
,
J. E.
,
2013
, “
Differentiating Ability in Users of the ReWalkTM Powered Exoskeleton: An Analysis of Walking Kinematics
,”
IEEE 13th International Congress on Rehabilitation Robotics
, Seattle, WA, June
24
26
.10.1109/ICORR.2013.6650338
8.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
,
La Scaleia
,
V.
,
Sylos-Labini
,
F.
,
Molinari
,
M.
,
Tamburella
,
F.
,
Pisotta
,
I.
,
Thorsteinsson
,
F.
,
Ilzkovitz
,
M.
,
Gancet
,
J.
,
Nevatia
,
Y.
,
Hauffe
,
R.
,
Zanow
,
F.
, and
van der Kooij
,
H.
,.
2015
, “
Design and Evaluation of the Mindwalker Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil.
,
23
(
2
), pp.
277
286
.10.1109/TNSRE.2014.2365697
9.
van Dijk
,
W.
,
Meijneke
,
C.
, and
van der Kooij
,
H.
,
2017
, “
Evaluation of the Achilles Ankle Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil.
,
25
(
2
), pp.
151
160
.10.1109/TNSRE.2016.2527780
10.
Yeung
,
L. F.
,
Ockenfeld
,
C.
,
Pang
,
M. K.
,
Wai
,
H. W.
,
Soo
,
O. Y.
,
Wai Li
,
S.
, and
Tong
,
K. Y.
,
2018
, “
Randomized Controlled Trial of Robotassisted Gait Training With Dorsiflexion Assistance on Chronic Stroke Patients Wearing Ankle-Footorthosis
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
51
.10.1186/s12984-018-0394-7
11.
Lerner
,
Z. F.
,
Gasparri
,
G. M.
,
Bair
,
M. O.
,
Lawson
,
J. L.
,
Luque
,
J.
,
Harvey
,
T. A.
, and
Lerner
,
A. T.
,
2018
, “
An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil.
,
26
(
10
), pp.
1985
1993
.10.1109/TNSRE.2018.2870756
12.
Gefen
,
A.
,
Megido-Ravid
,
M.
, and
Itzchak
,
Y.
,
2001
, “
In Vivo Biomechanical Behavior of the Human Heel Pad During the Stance Phase of Gait
,”
J. Biomech.
,
34
(
12
), pp.
1661
1665
.10.1016/S0021-9290(01)00143-9
13.
Baines
,
P. M.
,
Schwab
,
A. L.
, and
Van Soest
,
A. J.
,
2018
, “
Experimental Estimation of Energy Absorption During Heel Strike in Human Barefoot Walking
,”
PLoS One
,
13
(
6
), p.
e0197428
.10.1371/journal.pone.0197428
14.
Hicks
,
J. H.
,
1954
, “
The Mechanics of the Foot—II: The Plantar Aponeurosis and the Arch
,”
J. Anat.
,
88
(
1
), pp.
25
31
.https://www.ncbi.nlm.nih.gov/pubmed/13129168
15.
Ker
,
R. F.
,
Bennett
,
M. B.
,
Bibby
,
S. R.
,
Kester
,
R. C.
, and
Alexander
,
R. M.
,
1987
, “
The Spring in the Arch of the Human Foot
,”
Nature
,
325
(
6100
), pp.
147
149
.10.1038/325147a0
16.
Wager
,
J. C.
, and
Challis
,
J. H.
,
2016
, “
Elastic Energy Within the Human Plantar Aponeurosis Contributesto Arch Shortening During the Push-Off Phase of Running
,”
J. Biomech.
,
49
(
5
), pp.
704
709
.10.1016/j.jbiomech.2016.02.023
17.
Kelly
,
L. A.
,
Farris
,
D. J.
,
Cresswell
,
A. G.
, and
Lichtwark
,
G. A.
,
2019
, “
Intrinsic Foot Muscles Contribute to Elastic Energy Storage and Return in the Human Foot
,”
J. Appl. Physiol.
,
126
(
1
), pp.
231
238
.10.1152/japplphysiol.00736.2018
18.
Farris
,
D. J.
,
Kelly
,
L. A.
,
Cresswell
,
A. G.
, and
Lichtwark
,
G. A.
,
2019
, “
The Functional Importance of Human Foot Muscles for Bipedal Locomotion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
5
), pp.
1645
1650
.10.1073/pnas.1812820116
19.
Kuo
,
A. D.
,
2007
, “
The Six Determinants of Gait and the Inverted Pendulum Analogy: A Dynamic Walking Perspective
,”
Hum. Mov. Sci.
,
26
(
4
), pp.
617
656
.10.1016/j.humov.2007.04.003
20.
Zelik
,
K. E.
,
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Czerniecki
,
J. M.
, and
Kuo
,
A. D.
,
2011
, “
Systematic Variation of Prosthetic Foot Spring Affects Center-of-Mass Mechanics and Metabolic Cost During Walking
,”
IEEE Trans. Neural Syst. Rehabil.
,
19
(
4
), pp.
411
419
.10.1109/TNSRE.2011.2159018
21.
Malcolm
,
P.
,
Quesada
,
R. E.
,
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2015
, “
The Influence of Push-Off Timing in a Robotic Ankle-Foot Prosthesis on the Energetics and Mechanics of Walking
,”
J. Neuroeng. Rehabil.
,
12
(
1
), p.
21
.10.1186/s12984-015-0014-8
22.
Collins
,
S. H.
,
Wiggin
,
M. B.
,
Sawicki
,
G. S.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.10.1038/nature14288
23.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2014
, “
The Effects of Prosthetic Ankle Stiffness on Ankle and Knee Kinematics, Prosthetic Limb Loading, and Net Metabolic Cost of Trans-Tibial Amputee Gait
,”
Clin. Biomech.
,
29
(
1
), pp.
98
104
.10.1016/j.clinbiomech.2013.10.012
24.
Galle
,
S.
,
Malcolm
,
P.
,
Collins
,
S. H.
, and
Clercq
,
D. D.
,
2017
, “
Reducing the Metabolic Cost of Walking With an Ankle Exoskeleton: Interaction Between Actuation Timing and Power
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
35
.10.1186/s12984-017-0235-0
25.
Honert
,
E. C.
,
Bastas
,
G.
, and
Zelik
,
K. E.
,
2018
, “
Effect of Toe Joint Stiffness and Toe Shape on Walking Biomechanics
,”
Bioinspiration Biomimetics
,
13
(
6
), p.
066007
.10.1088/1748-3190/aadf46
26.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Gait of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Dev.
,
47
(
9
), pp.
899
910
.10.1682/JRRD.2009.10.0166
27.
Fatone
,
S.
,
Gard
,
S. A.
, and
Malas
,
B. S.
,
2009
, “
Effect of Ankle-Foot Orthosis Alignment and Footplate Length on the Gait of Adults With Poststroke Hemiplegia
,”
Arch. Phys. Med. Rehabil.
,
90
(
5
), pp.
810
818
.10.1016/j.apmr.2008.11.012
28.
Oleson
,
M.
,
Adler
,
D.
, and
Goldsmith
,
P.
,
2005
, “
A Comparison of Forefoot Stiffness in Running and Running Shoe Bending Stiffness
,”
J. Biomech.
,
38
(
9
), pp.
1886
1894
.10.1016/j.jbiomech.2004.08.014
29.
Morio
,
C.
,
Lake
,
M. J.
,
Gueguen
,
N.
,
Rao
,
G.
, and
Baly
,
L.
,
2009
, “
The Influence of Footwear on Foot Motion During Walking and Running
,”
J. Biomech.
,
42
(
13
), pp.
2081
2088
.10.1016/j.jbiomech.2009.06.015
30.
Franklin
,
S.
,
Grey
,
M. J.
,
Heneghan
,
N.
,
Bowen
,
L.
, and
Li
,
F. X.
,
2015
, “
Barefoot vs Common Footwear: A Systematic Review of the Kinematic, Kinetic and Muscle Activity Differences During Walking
,”
Gait Posture
,
42
(
3
), pp.
230
239
.10.1016/j.gaitpost.2015.05.019
31.
Arnold
,
J. B.
, and
Bishop
,
C.
,
2013
, “
Quantifying Foot Kinematics Inside Athletic Footwear: A Review
,”
Footwear Sci.
,
5
(
1
), pp.
55
62
.10.1080/19424280.2012.735257
32.
Totah
,
D.
,
Menon
,
M.
,
Jones-Hershinow
,
C.
,
Barton
,
K.
, and
Gates
,
D. H.
,
2019
, “
The Impact of Ankle-Foot Orthosis Stiffness on Gait: A Systematic Literature Review
,”
Gait Posture
,
69
, pp.
101
111
.10.1016/j.gaitpost.2019.01.020
33.
Stefanyshyn
,
D.
, and
Fusco
,
C.
,
2004
, “
Increased Shoe Bending Stiffness Increases Sprint Performance
,”
Sport Biomech.
,
3
(
1
), pp.
55
66
.10.1080/14763140408522830
34.
Carson
,
M. C.
,
Harrington
,
M. E.
,
Thompson
,
N.
,
O'Connor
,
J. J.
, and
Theologis
,
T. N.
,
2001
, “
Kinematic Analysis of a Multi-Segment Foot Model for Research and Clinical Applications: A Repeatability Analysis
,”
J. Biomech.
,
34
(
10
), pp.
1299
1307
.10.1016/S0021-9290(01)00101-4
35.
Davis
,
R. B. I. I.
,
Ounpuu
,
S.
,
Tyburski
,
D.
, and
Gage
,
J. R.
,
1991
, “
A Gait Analysis Data Collection and Reduction Technique
,”
Hum. Mov. Sci.
,
10
(
5
), pp.
575
597
.10.1016/0167-9457(91)90046-Z
36.
Pothrat
,
C.
,
Authier
,
G.
,
Viehweger
,
E.
,
Berton
,
E.
, and
Rao
,
G.
,
2015
, “
One- and Multi-Segment Foot Models Lead to Opposite Results on Ankle Joint Kinematics During Gait: Implications for Clinical Assessment
,”
Clin. Biomech.
,
30
(
5
), pp.
493
499
.10.1016/j.clinbiomech.2015.03.004
37.
Takahashi
,
K. Z.
,
Kepple
,
T. M.
, and
Stanhope
,
S. J.
,
2012
, “
A Unified Deformable (UD) Segment Model for Quantifying Total Power of Anatomical and Prosthetic Below-Knee Structures During Stance in Gait
,”
J. Biomech.
,
45
(
15
), pp.
2662
2667
.10.1016/j.jbiomech.2012.08.017
38.
Reinschmidt
,
C.
,
Stacoff
,
A.
, and
Stussi
,
E.
,
1992
, “
Heel Movement Within a Court Shoe
,”
Med. Sci. Sport Exercise
,
24
(
12
), pp.
1390
1395
.https://www.ncbi.nlm.nih.gov/pubmed/1470023
39.
Dingwell
,
J. B.
, and
Marin
,
L. C.
,
2006
, “
Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds
,”
J. Biomech.
,
39
(
3
), pp.
444
452
.10.1016/j.jbiomech.2004.12.014
40.
Zelik
,
K. E.
, and
Honert
,
E. C.
,
2018
, “
Ankle and Foot Power in Gait Analysis: Implications for Science, Technology and Clinical Assessment
,”
J. Biomech.
,
75
, pp.
1
12
.10.1016/j.jbiomech.2018.04.017
41.
Farinelli
,
V.
,
Hosseinzadeh
,
L.
,
Palmisano
,
C.
, and
Frigo
,
C.
,
2019
, “
An Easily Applicable Method to Analyse the Ankle-Foot Power Absorption and Production During Walking
,”
Gait Posture
,
71
, pp.
56
61
.10.1016/j.gaitpost.2019.04.010
42.
McMaster-Carr,
2019
, “Delrin (8573K74) Data Sheet,”.
43.
Lakens
,
D.
,
2017
, “
Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses
,”
Soc. Psychol. Pers. Sci.
,
8
(
4
), pp.
355
362
.10.1177/1948550617697177
44.
Jin
,
L.
,
Adamczyk
,
P. G.
,
Roland
,
M.
, and
Hahn
,
M. E.
,
2016
, “
The Effect of High- and Low-Damping Prosthetic Foot Structures on Knee Loading in the Uninvolved Limb Across Different Walking Speeds
,”
J. Appl. Biomech.
,
32
(
3
), pp.
233
240
.10.1123/jab.2015-0143
45.
Kao
,
P. C.
,
Lewis
,
C. L.
, and
Ferris
,
D. P.
,
2010
, “
Invariant Ankle Moment Patterns When Walking With and Without a Robotic Ankle Exoskeleton
,”
J. Biomech.
,
43
(
2
), pp.
203
209
.10.1016/j.jbiomech.2009.09.030
46.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.10.1016/j.jbiomech.2012.11.051
47.
Hayafune
,
N.
,
Hayafune
,
Y.
, and
Jacob
,
H. A. C.
,
1999
, “
Pressure and Force Distribution Characteristics Under the Normal Foot During the Push-Off Phase in Gait
,”
Foot
,
9
(
2
), pp.
88
92
.10.1054/foot.1999.0518
You do not currently have access to this content.