Abstract

Finite element analysis (FEA) is a numerical modeling tool vastly employed in research facilities to analyze and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. Yet, the use of finite element modeling (FEM) in a framework compatible with clinical constraints is hindered by, among others, heavy and time-consuming assessments of material properties. Ultrasound (U.S.) imaging opens new and unique opportunities for the assessment of in vivo material properties of soft tissues. Confident of these advances, a method combining a freehand U.S. probe and a force sensor was developed in order to compute the hyperelastic constitutive parameters of the soft tissues of the thigh in both relaxed (R) and contracted (C) muscles' configurations. Seven asymptomatic subjects were included for the experiment. Two operators in each configuration performed the acquisitions. Inverse FEM allowed for the optimization of an Ogden's hyperelastic constitutive model of soft tissues of the thigh in large displacement. The mean shear modulus identified for configurations R and C was, respectively, 3.2 ± 1.3 kPa and 13.7 ± 6.5 kPa. The mean alpha parameter identified for configurations R and C was, respectively, 10 ± 1 and 9 ± 4. An analysis of variance showed that the configuration had an effect on constitutive parameters but not on the operator.

References

References
1.
Colombo
,
G.
,
Morotti
,
R.
, and
Rizzi
,
C.
,
2014
, “
FE Analysis of Contact Between Residual Limb and Socket During Simulation of Amputee Motion
,”
Comput. Aided Des. Appl.
,
11
(
4
), pp.
381
388
.10.1080/16864360.2014.881178
2.
Sengeh
,
D. M.
,
Moerman
,
K. M.
,
Petron
,
A.
, and
Herr
,
H.
,
2016
, “
Multi-Material 3-D Viscoelastic Model of a Transtibial Residuum From In-Vivo Indentation and MRI Data
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
379
392
.10.1016/j.jmbbm.2016.02.020
3.
Jia
,
X.
,
Zhang
,
M.
,
Li
,
X.
, and
Lee
,
W. C. C.
,
2005
, “
A Quasi-Dynamic Nonlinear Finite Element Model to Investigate Prosthetic Interface Stresses During Walking for Trans-Tibial Amputees
,”
Clin. Biomech.
,
20
(
6
), pp.
630
635
.10.1016/j.clinbiomech.2005.03.001
4.
Lee
,
W. C. C.
,
Zhang
,
M.
,
Jia
,
X.
, and
Cheung
,
J. T. M.
,
2004
, “
Finite Element Modelling of the Contact Interface Between Trans-Tibial Residual Limb and Prosthetic Socket
,”
Med. Eng. Phys.
, 26(8), pp.
665
662
.10.1016/j.medengphy.2004.04.010
5.
Zhang
,
M.
, and
Roberts
,
C.
,
2000
, “
Comparison of Computational Analysis With Clinical Measurement of Stresses on Below-Knee Residual Limb in a Prosthetic Socket
,”
Med. Eng. Phys.
,
22
(
9
), pp.
607
612
.10.1016/S1350-4533(00)00079-5
6.
Colombo
,
G.
,
Comotti
,
C.
,
Redaelli
,
D. F.
,
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Vitali
,
A.
,
2016
, “
A Method to Improve Prosthesis Leg Design Based on Pressure Analysis at the Socket-Residual Limb Interface
,”
ASME
Paper No. DETC2016-60131.10.1115/DETC2016-60131
7.
Zhang
,
M.
, and
Mak
,
A. F. T.
,
1996
, “
A Finite Element Analysis of the Load Transfer Between an Above-Knee Residual Limb and Its Prosthetic Socket—Roles of Interface Friction and Distal-End Boundary Conditions
,”
IEEE Trans. Rehabil. Eng.
, 4(4), pp.
337
346
.10.1109/86.547935
8.
Lacroix
,
D.
, and
Patiño
,
J. F. R.
,
2011
, “
Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket
,”
Ann. Biomed. Eng.
, 39(12), pp.
2972
2983
.10.1007/s10439-011-0389-z
9.
Andrés Vélez Zea
,
J.
,
Marcela
,
L.
,
Góez
,
B.
,
Abdul
,
J.
, and
Ossa
,
V.
,
2015
, “
Relation Between Residual Limb Length and Stress Distribution Over Stump for Transfemoral Amputees
,”
Revista EIA
, 12(23), pp.
107
115
.10.14508/reia.2015.12.23.107-115
10.
Ramírez
,
J. F.
, and
Vélez
,
J. A.
,
2012
, “
Incidence of the Boundary Condition Between Bone and Soft Tissue in a Finite Element Model of a Transfemoral Amputee
,”
Prosthet. Orthot. Int.
,
36
(
4
), pp.
405
414
.10.1177/0309364612436409
11.
Colombo
,
G.
,
Filippi
,
S.
,
Rizzi
,
C.
, and
Rotini
,
F.
,
2010
, “
A New Design Paradigm for the Development of Custom-Fit Soft Sockets for Lower Limb Prostheses
,”
Comput. Ind.
,
61
(
6
), pp.
513
523
.10.1016/j.compind.2010.03.008
12.
Restrepo
,
V.
,
Villarraga
,
J.
, and
Palacio
,
J. P.
,
2014
, “
Stress Reduction in the Residual Limb of a Transfemoral Amputee Varying the Coefficient of Friction
,”
J. Prosthet. Orthot
,
26
(
4
), pp.
205
211
.10.1097/JPO.0000000000000044
13.
Ramasamy
,
E.
,
Avci
,
O.
,
Dorow
,
B.
,
Chong
,
S.-Y.
,
Gizzi
,
L.
,
Steidle
,
G.
,
Schick
,
F.
, and
Röhrle
,
O.
,
2018
, “
An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models
,”
Front. Bioeng. Biotechnol.
,
6
, pp.
1
17
.10.3389/fbioe.2018.00126
14.
Cheung
,
J. T. M.
,
Zhang
,
M.
,
Leung
,
A. K. L.
, and
Fan
,
Y. B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.10.1016/j.jbiomech.2004.05.035
15.
Dickinson
,
A. S.
,
Steer
,
J. W.
, and
Worsley
,
P. R.
,
2017
, “
Finite Element Analysis of the Amputated Lower Limb: A Systematic Review and Recommendations
,”
Med. Eng. Phys.
,
43
, pp.
1
18
.10.1016/j.medengphy.2017.02.008
16.
Affagard
,
J.-S.
,
Bensamoun
,
S. F.
, and
Feissel
,
P.
,
2014
, “
Development of an Inverse Approach for the Characterization of In Vivo Mechanical Properties of the Lower Limb Muscles
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111012
.10.1115/1.4028490
17.
Affagard
,
J. S.
,
Feissel
,
P.
, and
Bensamoun
,
S. F.
,
2015
, “
Identification of Hyperelastic Properties of Passive Thigh Muscle Under Compression With an Inverse Method From a Displacement Field Measurement
,”
J. Biomech.
,
48
(
15
), pp.
4081
4086
.10.1016/j.jbiomech.2015.10.007
18.
Sadler
,
Z.
,
Scott
,
J.
,
Drost
,
J.
,
Chen
,
S.
,
Roccabianca
,
S.
, and
Bush
,
T. R.
,
2018
, “
Initial Estimation of the In Vivo Material Properties of the Seated Human Buttocks and Thighs
,”
Int. J. Non Linear. Mech.
,
107
, pp.
77
85
.10.1016/j.ijnonlinmec.2018.09.007
19.
Pathak
,
A. P.
,
Silver-Thorn
,
M. B.
,
Thierfelder
,
C. A.
, and
Prieto
,
T. E.
,
1998
, “
A Rate-Controlled Indentor for In Vivo Analysis of Residual Limb Tissues
,”
IEEE Trans. Rehabil. Eng.
,
6
(
1
), pp.
12
20
.10.1109/86.662616
20.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
,
1999
, “
Extraction of Quasi-Linear Viscoelastic Parameters for Lower Limb Soft Tissues From Manual Indentation Experiment
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
330
339
.10.1115/1.2798329
21.
Moerman
,
K. M.
,
Sprengers
,
A. M. J.
,
Nederveen
,
A. J.
, and
Simms
,
C. K.
,
2013
, “
A Novel MRI Compatible Soft Tissue Indentor and Fibre Bragg Grating Force Sensor
,”
Med. Eng. Phys.
,
35
(
4
), pp.
486
499
.10.1016/j.medengphy.2012.06.014
22.
Bell
,
M. A.
,
Kumar
,
S.
,
Kuo
,
L.
,
Sen
,
H. T.
,
Iordachita
,
I.
, and
Kazanzides
,
P.
,
2016
, “
Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control
,”
IEEE Trans. Biomed. Eng.
,
63
(
7
), pp.
1517
1524
.10.1109/TBME.2015.2497245
23.
Malinauskas
,
M.
,
Krouskop
,
T. A.
, and
Barry
,
P. A.
,
1989
, “
Noninvasive Measurement of the Stiffness of Tissue in the Above-Knee Amputation Limb
,”
J. Rehabil. Res. Dev.
,
26
(
3
), pp.
45
52
.https://pdfs.semanticscholar.org/ce5f/8d5ae45957fa3e06c315d485fd9fe6c5725b.pdf
24.
Goh
,
J. C.
,
Lee
,
P. V.
,
Toh
,
S. L.
, and
Ooi
,
C. K.
,
2005
, “
Development of an Integrated CAD-FEA Process for Below-Knee Prosthetic Sockets
,”
Clin. Biomech.
,
20
(
6
), pp.
623
629
.10.1016/j.clinbiomech.2005.02.005
25.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
,
1999
, “
Effective Elastic Properties for Lower Limb Soft Tissues From Manual Indentation Experiment
,”
IEEE Trans. Rehabil. Eng.
,
7
, pp.
257
267
.10.1109/86.788463
26.
Mak
,
A. F. T.
,
Liu
,
G. H.
, and
Lee
,
S. Y.
,
1994
, “
Biomechanical Assessment of Below-Knee Residual Limb Tissue
,”
J. Rehabil. Res. Dev.
,
31
(
3
), pp.
188
198
.https://pdfs.semanticscholar.org/58f5/9242ba496fd05ad0be59765e96bc69dca4d9.pdf
27.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Herrmann
,
G.
, and
Mockros
,
L. F.
,
1972
, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
,
5
(
5
), pp.
541
551
.10.1016/0021-9290(72)90010-3
28.
Zhang
,
M.
,
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
,
1997
, “
Estimating the Effective Young's Modulus of Soft Tissues From Indentation Tests—Nonlinear Finite Element Analysis of Effects of Friction and Large Deformation
,”
Med. Eng. Phys.
,
19
(
6
), pp.
512
517
.10.1016/S1350-4533(97)00017-9
29.
Zheng
,
Y. P.
,
Mak
,
A. F. T.
, and
Lue
,
B.
,
1999
, “
Objective Assessment of Limb Tissue Elasticity: Development of a Manual Indentation Procedure
,”
J. Rehabil. Res. Dev.
,
36
(
2
), pp.
71
85
.https://www.researchgate.net/publication/47870368_Objective_assessment_of_limb_tissue_elasticity_Development_of_a_manual_indentation_procedure
30.
Fung
,
Y.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol. Content
,
213
(
6
), pp.
1532
1544
.10.1152/ajplegacy.1967.213.6.1532
31.
Frauziols
,
F.
,
Chassagne
,
F.
,
Badel
,
P.
,
Navarro
,
L.
,
Molimard
,
J.
,
Curt
,
N.
, and
Avril
,
S.
,
2016
, “
In Vivo Identification of the Passive Mechanical Properties of Deep Soft Tissues in the Human Leg
,”
Strain
,
52
(
5
), pp.
400
411
.10.1111/str.12204
32.
Samani
,
A.
, and
Plewes
,
D.
,
2004
, “
A Method to Measure the Hyperelastic Parameters of Ex Vivo Breast Tissue Samples
,”
Phys. Med. Biol.
,
49
(
18
), pp.
4395
4405
.10.1088/0031-9155/49/18/014
33.
Martins
,
P. A. L. S.
,
Jorge
,
R. M. N.
, and
Ferreira
,
A. J. M.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.10.1111/j.1475-1305.2006.00257.x
34.
Vavourakis
,
V.
,
Hipwell
,
J. H.
, and
Hawkes
,
D. J.
,
2016
, “
An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
187
201
.10.1007/s10439-015-1405-5
35.
Kauer
,
M.
,
Vuskovic
,
V.
,
Dual
,
J.
,
Szekely
,
G.
, and
Bajka
,
M.
,
2001
, Inverse Finite Element Characterization of Soft Tissues,
Med. Image Anal.
, 6(3), pp.
275
287
.10.1016/S1361-8415(02)00085-3
36.
Silver-Thorn
,
M. B.
, and
Childress
,
D. S.
,
1997
, “
Generic, Geometric Finite Element Analysis of the Transtibial Residual Limb and Prosthetic Socket
,”
J. Rehabil. Res. Dev.
,
34
(
2
), pp.
171
186
.https://www.researchgate.net/publication/14110142_Generic_geometric_finite_element_analysis_of_the_transtibial_residual_limb_and_prosthetic_socket
37.
Lin
,
C. C.
,
Chang
,
C. H.
,
Wu
,
C. L.
,
Chung
,
K. C.
, and
Liao
,
I. C.
,
2004
, “
Effects of Liner Stiffness for Trans-Tibial Prosthesis: A Finite Element Contact Model
,”
Med. Eng. Phys.
,
26
(
1
), pp.
1
9
.10.1016/S1350-4533(03)00127-9
38.
Krouskop
,
T. A.
,
Dougherty
,
D. R.
, and
Vinson
,
F. S.
,
1987
, “
A Pulsed Doppler Ultrasonic System for Making Noninvasive Measurements of the Mechanical Properties of Soft Tissue
,”
J. Rehabil. Res. Dev.
,
24
(
2
), pp.
1
8
.https://pdfs.semanticscholar.org/d48e/f67f6955edc56ce968fd3bed9e5b4d0a5696.pdf
39.
Linder-Ganz
,
E.
,
Shabshin
,
N.
,
Itzchak
,
Y.
, and
Gefen
,
A.
,
2007
, “
Assessment of Mechanical Conditions in Sub-Dermal Tissues During Sitting: A Combined Experimental-MRI and Finite Element Approach
,”
J. Biomech.
,
40
(
7
), pp.
1443
1454
.10.1016/j.jbiomech.2006.06.020
40.
Al-Dirini
,
R. M. A.
,
Reed
,
M. P.
,
Hu
,
J.
, and
Thewlis
,
D.
,
2016
, “
Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual
,”
Ann. Biomed. Eng.
,
44
(
9
), pp.
2805
2816
.10.1007/s10439-016-1560-3
41.
Macron
,
A.
,
Pillet
,
H.
,
Doridam
,
J.
,
Verney
,
A.
, and
Rohan
,
P. Y.
,
2018
, “
Development and Evaluation of a New Methodology for the Fast Generation of Patient-Specific Finite Element Models of the Buttock for Sitting-Acquired Deep Tissue Injury Prevention
,”
J. Biomech.
,
79
, pp.
173
180
.10.1016/j.jbiomech.2018.08.001
42.
Ogden
,
R. W.
,
1973
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Rubber Chem. Technol.
,
46
(
2
), pp.
398
416
.10.5254/1.3542910
43.
Mott
,
P. H.
,
Dorgan
,
J. R.
, and
Roland
,
C. M.
,
2008
, “
The Bulk Modulus and Poisson's Ratio of “Incompressible” Materials
,”
J. Sound Vib.
,
312
(
4–5
), pp.
572
575
.10.1016/j.jsv.2008.01.026
44.
Allen
,
G. G.
,
1996
, “
Comprehensive Polymer Science and Supplements
,” Elsevier, San Diego, CA, accessed Mar. 3, 2020, https://www.sciencedirect.com/referencework/9780080967011/comprehensive-polymer-science-and-supplements
45.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
,
1997
, “
Extraction of Effective Young's Modulus of Skin and Subcutaneous Tissues From Manual Indentation Data
,”
Proceedings of the 19th International Conference of the IEEE/EMBS
, Chicago, IL, Oct. 30–Nov. 2, pp.
2246
2249
.10.1109/IEMBS.1997.758807
46.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
,
1998
,
The Rock Physics Handbook
, The Press Syndicate of the University of Cambridge, Cambridge, UK.
47.
Mak
,
A. F. T.
,
Zhang
,
M.
, and
Boone
,
D. A.
,
2001
, “
State-of-the-Art Methods for Geometric and Biomechanical Assessments of Residual Limbs: A Review
,”
J. Rehabil. Res. Dev.
,
38
(
5
), pp.
487
504
.https://www.researchgate.net/publication/11623099_State-of-the-art_methods_for_geometric_and_biomechanical_assessments_of_residual_limbs_A_review
48.
Tönük
,
E.
, and
Silver-Thorn
,
M. B.
,
2003
, “
Nonlinear Viscoelastic Material Property Estimation of Lower Extremity Residual Limb Tissues
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
11(1), pp.
43
53
.10.1109/TNSRE.2003.810436
You do not currently have access to this content.