Abstract

Products from fretting wear and corrosion in the taper junction of total hip arthroplasty (THA) devices can lead to adverse local tissue reactions. Predicting damage as a function of design parameters would aid in the development of more robust devices. The objectives of this study were to develop an automated method for identifying areas of fretting wear on THA taper junctions, and to assess the predictive ability of a finite element model to simulate fretting wear in THA taper junctions. THA constructs were fatigue loaded, thus inducing damage on the stem taper. An automated imaging and analysis algorithm quantified fretting wear on the taper surfaces. Specimen-specific finite element models were used to calculate fretting work done (FWD) at the taper junction. Simulated FWD was correlated to imaged fretting wear. Results showed that the automated imaging approach identified fretting wear on the taper surface. Additionally, finite element models showed the greatest predictive ability for tapers exhibiting distal contact. Finite element models predicted an average of 30.3% of imaged fretting wear. With additional validation, the imaging and finite element techniques may be useful to manufacturers and regulators in the development and review of new THA devices.

References

1.
Wolford
,
M. L.
,
Palso
,
K.
, and
Bercovitz
,
A.
,
2015
, “
Hospitalization for Total Hip Replacement Among Inpatients Aged 45 and Over: United States, 2000–2010
,”
NCHS Data Brief
,
186
, pp.
1
8
.https://www.cdc.gov/nchs/products/databriefs/db186.htm
2.
Steiner
,
C.
,
Andrews
,
R.
,
Barrett
,
M.
, and
Weiss
,
A.
,
2012
, “
HCUP Projections: Mobility/Orthopedic Procedures 2003 to 2012
,” U.S. Agency for Healthcare Research and Quality, Rockville, MD, HCUP Projections, Report No.
2012-03
.https://hcup-us.ahrq.gov/reports/projections/2012-03.pdf
3.
Barrack
,
R. L.
,
1994
, “
Modularity of Prosthetic Implants
,”
J. Am. Acad. Orthop. Surg.
,
2
(
1
), pp.
16
25
.10.5435/00124635-199401000-00003
4.
Kop
,
A. M.
,
Keogh
,
C.
, and
Swarts
,
E.
,
2012
, “
Proximal Component Modularity in THA–At What Cost? An Implant Retrieval Study
,”
Clin. Orthop. Relat. Res.
,
470
(
7
), pp.
1885
1894
.10.1007/s11999-011-2155-9
5.
Collier
,
J. P.
,
Mayor
,
M. B.
,
Williams
,
I. R.
,
Surprenant
,
V. A.
,
Surprenant
,
H. P.
, and
Currier
,
B. H.
,
1995
, “
The Tradeoffs Associated With Modular Hip Prostheses
,”
Clin. Orthop. Relat. Res.
, 311, pp.
91
101
.https://journals.lww.com/clinorthop/Abstract/1995/02000/The_Tradeoffs_Associated_With_Modular_Hip.11.aspx
6.
Hozack
,
W. J.
,
Mesa
,
J. J.
, and
Rothman
,
R. H.
,
1996
, “
Head-Neck Modularity for Total Hip Arthroplasty. Is It Necessary?
,”
J Arthroplasty
,
11
(
4
), pp.
397
399
.10.1016/S0883-5403(96)80028-3
7.
Srinivasan
,
A.
,
Jung
,
E.
, and
Levine
,
B. R.
,
2012
, “
Modularity of the Femoral Component in Total Hip Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
,
20
(
4
), pp.
214
222
.10.5435/JAAOS-20-04-214
8.
Higgs
,
G. B.
,
Hanzlik
,
J. A.
,
MacDonald
,
D. W.
,
Gilbert
,
J. L.
,
Rimnac
,
C. M.
, and
Kurtz
,
S. M.
, and
Implant Research Center Writing, C.
,
2013
, “
Is Increased Modularity Associated With Increased Fretting and Corrosion Damage in Metal-on-Metal Total Hip Arthroplasty Devices?: A Retrieval Study
,”
J. Arthroplasty
,
28
(
Suppl. 8
), pp.
2
6
.10.1016/j.arth.2013.05.040
9.
Castro
,
F. P.
, Jr.
,
Chimento
,
G.
,
Munn
,
B. G.
,
Levy
,
R. S.
,
Timon
,
S.
, and
Barrack
,
R. L.
,
1997
, “
An Analysis of Food and Drug Administration Medical Device Reports Relating to Total Joint Components
,”
J. Arthroplasty
,
12
(
7
), pp.
765
771
.10.1016/S0883-5403(97)90006-1
10.
Collier
,
J. P.
,
Mayor
,
M. B.
,
Jensen
,
R. E.
,
Surprenant
,
V. A.
,
Surprenant
,
H. P.
,
McNamar
,
J. L.
, and
Belec
,
L.
,
1992
, “
Mechanisms of Failure of Modular Prostheses
,”
Clin. Orthop. Relat. Res.
,
285
, pp.
129
139
.https://journals.lww.com/clinorthop/Abstract/1992/12000/Mechanisms_of_Failure_of_Modular_Prostheses.17.aspx
11.
Hernigou
,
P.
,
Queinnec
,
S.
, and
Flouzat Lachaniette
,
C. H.
,
2013
, “
One Hundred and Fifty Years of History of the Morse Taper: From Stephen A. Morse in 1864 to Complications Related to Modularity in Hip Arthroplasty
,”
Int. Orthop.
,
37
(
10
), pp.
2081
2088
.10.1007/s00264-013-1927-0
12.
Goldberg
,
J. R.
,
Gilbert
,
J. L.
,
Jacobs
,
J. J.
,
Bauer
,
T. W.
,
Paprosky
,
W.
, and
Leurgans
,
S.
,
2002
, “
A Multicenter Retrieval Study of the Taper Interfaces of Modular Hip Prostheses
,”
Clin. Orthop. Relat. Res.
,
401
, pp.
149
161
.10.1097/00003086-200208000-00018
13.
Gilbert
,
J. L.
,
Buckley
,
C. A.
, and
Jacobs
,
J. J.
,
1993
, “
In Vivo Corrosion of Modular Hip Prosthesis Components in Mixed and Similar Metal Combinations. The Effect of Crevice, Stress, Motion, and Alloy Coupling
,”
J. Biomed. Mater. Res.
,
27
(
12
), pp.
1533
1544
.10.1002/jbm.820271210
14.
Hussenbocus
,
S.
,
Kosuge
,
D.
,
Solomon
,
L. B.
,
Howie
,
D. W.
, and
Oskouei
,
R. H.
,
2015
, “
Head-Neck Taper Corrosion in Hip Arthroplasty
,”
Biomed. Res. Int.
,
2015
, pp.
1
9
.10.1155/2015/758123
15.
Langton
,
D. J.
,
Sidaginamale
,
R.
,
Lord
,
J. K.
,
Nargol
,
A. V.
, and
Joyce
,
T. J.
,
2012
, “
Taper Junction Failure in Large-Diameter Metal-on-Metal Bearings
,”
Bone Jt. Res.
,
1
(
4
), pp.
56
63
.10.1302/2046-3758.14.2000047
16.
Cooper
,
H. J.
,
Della Valle
,
C. J.
,
Berger
,
R. A.
,
Tetreault
,
M.
,
Paprosky
,
W. G.
,
Sporer
,
S. M.
, and
Jacobs
,
J. J.
,
2012
, “
Corrosion at the Head-Neck Taper as a Cause for Adverse Local Tissue Reactions After Total Hip Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
94
(
18
), pp.
1655
1661
.10.2106/JBJS.K.01352
17.
Carli
,
A.
,
Politis
,
A.
,
Zukor
,
D.
,
Huk
,
O.
, and
Antoniou
,
J.
,
2015
, “
Clinically Significant Corrosion at the Head-Neck Taper Interface in Total Hip Arthroplasty: A Systematic Review and Case Series
,”
Hip Int.
,
25
(
1
), pp.
7
14
.10.5301/hipint.5000180
18.
Whitehouse
,
M. R.
,
Endo
,
M.
,
Zachara
,
S.
,
Nielsen
,
T. O.
,
Greidanus
,
N. V.
,
Masri
,
B. A.
,
Garbuz
,
D. S.
, and
Duncan
,
C. P.
,
2015
, “
Adverse Local Tissue Reactions in Metal-on-Polyethylene Total Hip Arthroplasty Due to Trunnion Corrosion: The Risk of Misdiagnosis
,”
Bone Jt. J.
,
97-B
(
8
), pp.
1024
1030
.10.1302/0301-620X.97B8.34682
19.
Gilbert
,
J. L.
,
Mehta
,
M.
, and
Pinder
,
B.
,
2009
, “
Fretting Crevice Corrosion of Stainless Steel stem-CoCr Femoral Head Connections: Comparisons of Materials, Initial Moisture, and Offset Length
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
88
(
1
), pp.
162
173
.10.1002/jbm.b.31164
20.
Kao
,
Y. Y.
,
Koch
,
C. N.
,
Wright
,
T. M.
, and
Padgett
,
D. E.
,
2016
, “
Flexural Rigidity, Taper Angle, and Contact Length Affect Fretting of the Femoral Stem Trunnion in Total Hip Arthroplasty
,”
J. Arthroplasty
,
31
(
9
), pp.
254
258
.10.1016/j.arth.2016.02.079
21.
Nassif
,
N. A.
,
Nawabi
,
D. H.
,
Stoner
,
K.
,
Elpers
,
M.
,
Wright
,
T.
, and
Padgett
,
D. E.
,
2014
, “
Taper Design Affects Failure of Large-Head Metal-on-Metal Total Hip Replacements
,”
Clin. Orthop. Relat. Res.
,
472
(
2
), pp.
564
571
.10.1007/s11999-013-3115-3
22.
Panagiotidou
,
A.
,
Meswania
,
J.
,
Hua
,
J.
,
Muirhead-Allwood
,
S.
,
Hart
,
A.
, and
Blunn
,
G.
,
2013
, “
Enhanced Wear and Corrosion in Modular Tapers in Total Hip Replacement is Associated With the Contact Area and Surface Topography
,”
J. Orthop. Res.
,
31
(
12
), pp.
2032
2039
.10.1002/jor.22461
23.
Pennock
,
A. T.
,
Schmidt
,
A. H.
, and
Bourgeault
,
C. A.
,
2002
, “
Morse-Type Tapers: Factors That May Influence Taper Strength During Total Hip Arthroplasty
,”
J. Arthroplasty
,
17
(
6
), pp.
773
778
.10.1054/arth.2002.33565
24.
Rehmer
,
A.
,
Bishop
,
N. E.
, and
Morlock
,
M. M.
,
2012
, “
Influence of Assembly Procedure and Material Combination on the Strength of the Taper Connection at the Head-Neck Junction of Modular Hip Endoprostheses
,”
Clin. Biomech. (Bristol, Avon)
,
27
(
1
), pp.
77
83
.10.1016/j.clinbiomech.2011.08.002
25.
Heiney
,
J. P.
,
Battula
,
S.
,
Vrabec
,
G. A.
,
Parikh
,
A.
,
Blice
,
R.
,
Schoenfeld
,
A. J.
, and
Njus
,
G. O.
,
2009
, “
Impact Magnitudes Applied by Surgeons and Their Importance When Applying the Femoral Head Onto the Morse Taper for Total Hip Arthroplasty
,”
Arch. Orthop. Trauma Surg.
,
129
(
6
), pp.
793
796
.10.1007/s00402-008-0660-4
26.
Duda
,
G. N.
,
Elias
,
J. J.
,
Valdevit
,
A.
, and
Chao
,
E. Y.
,
1997
, “
Locking Strength of Morse Tapers Used for Modular Segmental Bone Defect Replacement Prostheses
,”
Biomed. Mater. Eng.
,
7
(
4
), pp.
277
284
.10.3233/BME-1997-7407
27.
Schmidt
,
A. H.
,
Loch
,
D. A.
,
Bechtold
,
J. E.
, and
Kyle
,
R. F.
,
1997
, “
Assessing Morse Taper Function: The Relationship Between Impaction Force, Disassembly Force, and Design Variables
,”
Modularity of Orthopedic Implants
,
ASTM International
, West Conshohocken, PA.10.1520/STP12026S
28.
Hothi
,
H. S.
,
Matthies
,
A. K.
,
Berber
,
R.
,
Whittaker
,
R. K.
,
Skinner
,
J. A.
, and
Hart
,
A. J.
,
2014
, “
The Reliability of a Scoring System for Corrosion and Fretting, and Its Relationship to Material Loss of Tapered, Modular Junctions of Retrieved Hip Implants
,”
J. Arthroplasty
,
29
(
6
), pp.
1313
1317
.10.1016/j.arth.2013.12.003
29.
Di Prima
,
M.
,
Vesnovsky
,
O.
,
Kovacs
,
P.
,
Hopper
,
R.
,
Ho
,
H.
,
Engh
,
C.
, and
Topoleski
,
L.
,
2015
, “
Comparison of Visual Assessment Techniques for Wear and Corrosion in Modular Hip Replacement Systems
,”
Modularity and Tapers in Total Joint Replacement Devices
,
ASTM International
, West Conshohocken, PA.10.1520/STP159120140152
30.
Fricka
,
K. B.
,
Ho
,
H.
,
Peace
,
W. J.
, and
Engh
,
C. A.
, Jr.
,
2012
, “
Metal-on-Metal Local Tissue Reaction is Associated With Corrosion of the Head Taper Junction
,”
J. Arthroplasty
,
27
(
8
), pp.
26
31
.10.1016/j.arth.2012.03.019
31.
Shareef
,
N.
, and
Levine
,
D.
,
1996
, “
Effect of Manufacturing Tolerances on the Micromotion at the Morse Taper Interface in Modular Hip Implants Using the Finite Element Technique
,”
Biomaterials
,
17
(
6
), pp.
623
630
.10.1016/0142-9612(96)88713-8
32.
Elkins
,
J. M.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
,
2014
, “
Stability and Trunnion Wear Potential in Large-Diameter Metal-on-Metal Total Hips: A Finite Element Analysis
,”
Clin. Orthop. Relat. Res.
,
472
(
2
), pp.
529
542
.10.1007/s11999-013-3244-8
33.
Fallahnezhad
,
K.
,
Farhoudi
,
H.
,
Oskouei
,
R. H.
, and
Taylor
,
M.
,
2016
, “
Influence of Geometry and Materials on the Axial and Torsional Strength of the Head-Neck Taper Junction in Modular Hip Replacements: A Finite Element Study
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
118
126
.10.1016/j.jmbbm.2015.12.044
34.
Donaldson
,
F. E.
,
Coburn
,
J. C.
, and
Siegel
,
K. L.
,
2014
, “
Total Hip Arthroplasty Head-Neck Contact Mechanics: A Stochastic Investigation of Key Parameters
,”
J. Biomech.
,
47
(
7
), pp.
1634
1641
.10.1016/j.jbiomech.2014.02.035
35.
ISO
,
2010
,
Implants for Surgery—Partial and Total Hip Joint Prostheses—Part 4: Determination of Endurance Properties and Performance of Stemmed Femoral Components
,
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 7206–4.
36.
ASTM
,
2014
,
Standard Practice for Fretting Corrosion Testing of Modular Implant Interfaces: Hip Femoral Head-Bore and Cone Taper Interface
,
American Society for Testing and Materials
,
West Conshohocken, PA, United States
, Standard No. ASTM F1875–98.
37.
Niinomi
,
M.
,
2002
, “
Recent Metallic Materials for Biomedical Applications
,”
Metall. Mater. Trans. A
,
33
(
3
), pp.
477
486
.10.1007/s11661-002-0109-2
38.
Ratner
,
B. D.
,
Hoffman
,
A. S.
,
Schoen
,
F. J.
, and
Lemons
,
J. E.
, “
1.2 Bulk Properties of Materials
,”
Biomaterials Science—An Introduction to Materials in Medicine
, 2nd ed.,
Elsevier
,
San Diego, CA
, p.
28
.
39.
Hussein
,
M.
,
Mohammed
,
A.
, and
Al-Aqeeli
,
N.
,
2015
, “
Wear Characteristics of Metallic Biomaterials: A Review
,”
Materials
,
8
(
5
), pp.
2749
2768
.10.3390/ma8052749
40.
Swaminathan
,
V.
, and
Gilbert
,
J. L.
,
2012
, “
Fretting Corrosion of CoCrMo and Ti6Al4V Interfaces
,”
Biomaterials
,
33
(
22
), pp.
5487
5503
.10.1016/j.biomaterials.2012.04.015
41.
Bitter
,
T.
,
Khan
,
I.
,
Marriott
,
T.
,
Lovelady
,
E.
,
Verdonschot
,
N.
, and
Janssen
,
D.
,
2018
, “
Finite Element Wear Prediction Using Adaptive Meshing at the Modular Taper Interface of Hip Implants
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
616
623
.10.1016/j.jmbbm.2017.10.032
42.
Ashkanfar
,
A.
,
Langton
,
D. J.
, and
Joyce
,
T. J.
,
2017
, “
Does a Micro-Grooved Trunnion Stem Surface Finish Improve Fixation and Reduce Fretting Wear at the Taper Junction of Total Hip Replacements? A Finite Element Evaluation
,”
J. Biomech.
,
63
, pp.
47
54
.10.1016/j.jbiomech.2017.07.027
43.
Ashkanfar
,
A.
,
Langton
,
D. J.
, and
Joyce
,
T. J.
,
2017
, “
A Large Taper Mismatch is One of the Key Factors Behind High Wear Rates and Failure at the Taper Junction of Total Hip Replacements: A Finite Element Wear Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
257
266
.10.1016/j.jmbbm.2017.01.018
44.
English
,
R.
,
Ashkanfar
,
A.
, and
Rothwell
,
G.
,
2015
, “
A Computational Approach to Fretting Wear Prediction at the Head–Stem Taper Junction of Total Hip Replacements
,”
Wear
,
338–339
, pp.
210
220
.10.1016/j.wear.2015.06.016
You do not currently have access to this content.