Abstract

Robotic technology is increasingly used for sophisticated in vitro testing designed to understand the subtleties of joint biomechanics. Typically, the joint coordinate systems in these studies are established via palpation and digitization of anatomic landmarks. We are interested in wrist mechanics in which overlying soft tissues and indistinct bony features can introduce considerable variation in landmark localization, leading to descriptions of kinematics and kinetics that may not appropriately align with the bony anatomy. In the wrist, testing is often performed using either load or displacement control with standard material testers. However, these control modes either do not consider all six degrees-of-freedom (DOF) or reflect the nonlinear mechanical properties of the wrist joint. The development of an appropriate protocol to investigate complexities of wrist mechanics would potentially advance our understanding of normal, pathological, and artificial wrist function. In this study, we report a novel methodology for using CT imaging to generate anatomically aligned coordinate systems and a new methodology for robotic testing of wrist. The methodology is demonstrated with the testing of 9 intact cadaver specimens in 24 unique directions of wrist motion to a resultant torque of 2.0 N·m. The mean orientation of the major principal axis of range of motion (ROM) envelope was oriented 12.1 ± 2.7 deg toward ulnar flexion, which was significantly different (p < 0.001) from the anatomical flexion/extension axis. The largest wrist ROM was 98 ± 9.3 deg in the direction of ulnar flexion, 15 deg ulnar from pure flexion, consistent with previous studies [1,2]. Interestingly, the radial and ulnar components of the resultant torque were the most dominant across all directions of wrist motion. The results of this study showed that we can efficiently register anatomical coordinate systems from CT imaging space to robotic test space adaptable to any cadaveric joint experiments and demonstrated a combined load-position strategy for robotic testing of wrist.

References

References
1.
Crisco
,
J. J.
,
Heard
,
W. M. R.
,
Rich
,
R. R.
,
Paller
,
D. J.
, and
Wolfe
,
S. W.
,
2011
, “
The Mechanical Axes of the Wrist Are Oriented Obliquely to the Anatomical Axes
,”
J. Bone Jt. Surg. Am.
,
93
(
2
), pp.
169
177
.10.2106/JBJS.I.01222
2.
Nichols
,
J. A.
,
Bednar
,
M. S.
,
Havey
,
R. M.
, and
Murray
,
W. M.
,
2017
, “
Decoupling the Wrist: A Cadaveric Experiment Examining Wrist Kinematics Following Midcarpal Fusion and Scaphoid Excision
,”
J. Appl. Biomech.
,
33
(
1
), pp.
12
23
.10.1123/jab.2015-0324
3.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.-Y.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.10.1016/S0021-9290(96)80009-1
4.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
,
1999
, “
Use of Robotic Technology for Diathrodial Joint Research
,”
J. Sci. Med. Sport
,
2
(
4
), pp.
283
297
.10.1016/S1440-2440(99)80002-4
5.
Woo
,
S. L.-Y.
,
Debski
,
R. E.
,
Vangura
,
A. J.
,
Withrow
,
J. D.
,
Vogrin
,
T. M.
,
Wong
,
E. K.
, and
Fu
,
F. H.
,
2000
, “
Use of Robotic Technology to Study the Biomechanics of Ligaments and Their Replacements
,”
Operative Tech. Orthopaedics
,
10
(
1
), pp.
87
91
.10.1016/S1048-6666(00)80048-8
6.
Frey
,
M.
,
Burgkart
,
R.
,
Regenfelder
,
F.
, and
Riener
,
R.
,
2004
, “
Optimised Robot-Based System for the Exploration of Elastic Joint Properties
,”
Med. Biol. Eng. Comput.; Heidelberg
,
42
(
5
), pp.
674
678
.10.1007/BF02347550
7.
Noble
,
L. D.
, Jr.
,
Colbrunn
,
R. W.
,
Lee
,
D.-G.
,
van den Bogert
,
A. J.
, and
Davis
,
B. L.
,
2010
, “
Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
025001
.10.1115/1.4000851
8.
Mangan
,
B.
,
Hurtig
,
M. B.
, and
Dickey
,
J. P.
,
2010
, “
Application of Robotic Technology in Biomechanics to Study Joint Laxity
,”
J. Med. Eng. Technol.
,
34
(
7/8
), pp.
399
407
.10.3109/03091902.2010.503309
9.
Barsoum
,
W. K.
,
Lee
,
H. H.
,
Murray
,
T. G.
,
Colbrunn
,
R.
,
Klika
,
A. K.
,
Butler
,
S.
, and
van den Bogert
,
A. J.
,
2011
, “
Robotic Testing of Proximal Tibio-Fibular Joint Kinematics for Measuring Instability Following Total Knee Arthroplasty
,”
J. Orthop. Res.
,
29
(
1
), pp.
47
52
.10.1002/jor.21207
10.
Bell
,
K. M.
,
Hartman
,
R. A.
,
Gilbertson
,
L. G.
, and
Kang
,
J. D.
,
2013
, “
In Vitro Spine Testing Using a Robot-Based Testing System: Comparison of Displacement Control and Hybrid Control
,”
J. Biomech.
,
46
(
10
), pp.
1663
1669
.10.1016/j.jbiomech.2013.04.007
11.
Colbrunn
,
R. W.
,
Bottros
,
J. J.
,
Butler
,
R. S.
,
Klika
,
A. K.
,
Bonner
,
T. F.
,
Greeson
,
C.
,
van den Bogert
,
A. J.
, and
Barsoum
,
W. K.
,
2013
, “
Impingement and Stability of Total Hip Arthroplasty Versus Femoral Head Resurfacing Using a Cadaveric Robotics Model
,”
J. Orthop. Res.
,
31
(
7
), pp.
1108
1115
.10.1002/jor.22342
12.
Fraysse
,
F.
,
Costi
,
J. J.
,
Stanley
,
R. M.
,
Ding
,
B.
,
McGuire
,
D.
,
Eng
,
K.
,
Bain
,
G. I.
, and
Thewlis
,
D.
,
2014
, “
A Novel Method to Replicate the Kinematics of the Carpus Using a Six Degree-of-Freedom Robot
,”
J. Biomech.
,
47
(
5
), pp.
1091
1098
.10.1016/j.jbiomech.2013.12.033
13.
Bonner
,
T. F.
,
Colbrunn
,
R. W.
,
Bottros
,
J. J.
,
Mutnal
,
A. B.
,
Greeson
,
C. B.
,
Klika
,
A. K.
,
van den Bogert
,
A. J.
, and
Barsoum
,
W. K.
,
2015
, “
The Contribution of the Acetabular Labrum to Hip Joint Stability: A Quantitative Analysis Using a Dynamic Three-Dimensional Robot Model
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
061012
.10.1115/1.4030012
14.
Chokhandre
,
S.
,
Colbrunn
,
R.
,
Bennetts
,
C.
, and
Erdemir
,
A.
,
2015
, “
A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint
,”
PLoS One
,
10
(
9
), p.
e0138226
.10.1371/journal.pone.0138226
15.
Bates
,
N. A.
,
Nesbitt
,
R. J.
,
Shearn
,
J. T.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2015
, “
A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints With Respect to In Vivo Kinematics
,”
Ann. Biomed. Eng.
,
43
(
10
), pp.
2456
2466
.10.1007/s10439-015-1285-8
16.
Bell
,
K. M.
,
Arilla
,
F. V.
,
Rahnemai-Azar
,
A. A.
,
Fu
,
F. H.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2015
, “
Novel Technique for Evaluation of Knee Function Continuously Through the Range of Flexion
,”
J. Biomech.
,
48
(
13
), pp.
3728
3731
.10.1016/j.jbiomech.2015.08.019
17.
Goldsmith
,
M. T.
,
Rasmussen
,
M. T.
,
Lee Turnbull
,
T.
,
Trindade
,
C. A. C.
,
LaPrade
,
R. F.
,
Philippon
,
M. J.
, and
Wijdicks
,
C. A.
,
2015
, “
Validation of a Six Degree-of-Freedom Robotic System for Hip In Vitro Biomechanical Testing
,”
J. Biomech.
,
48
(
15
), pp.
4093
4100
.10.1016/j.jbiomech.2015.10.009
18.
Philippon
,
M. J.
,
Trindade
,
C. A. C.
,
Goldsmith
,
M. T.
,
Rasmussen
,
M. T.
,
Saroki
,
A. J.
,
Løken
,
S.
, and
LaPrade
,
R. F.
,
2017
, “
Biomechanical Assessment of Hip Capsular Repair and Reconstruction Procedures Using a 6 Degrees of Freedom Robotic System
,”
Am. J. Sports Med.
,
45
(
8
), pp.
1745
1754
.10.1177/0363546517697956
19.
Nacca
,
C.
,
Gil
,
J. A.
,
Badida
,
R.
,
Crisco
,
J. J.
, and
Owens
,
B. D.
,
2018
, “
Critical Glenoid Bone Loss in Posterior Shoulder Instability
,”
Am. J. Sports Med.
,
46
(
5
), pp.
1058
1065
.10.1177/0363546518758015
20.
Nacca
,
C.
,
Gil
,
J. A.
,
DeFroda
,
S. F.
,
Badida
,
R.
, and
Owens
,
B. D.
,
2018
, “
Comparison of a Distal Tibial Allograft and Scapular Spinal Autograft for Posterior Shoulder Instability With Glenoid Bone Loss
,”
Orthopaedic J. Sports Med.
,
6
(
7
), p.
232596711878669
.10.1177/2325967118786697
21.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.10.1016/0021-9290(96)00056-5
22.
Gilbertson
,
L. G.
,
Doehring
,
T. C.
, and
Kang
,
J. D.
,
2000
, “
New Methods to Study Lumbar Spine Biomechanics: Delineation of In Vitro Load-Displacement Characteristics by Using a Robotic/UFS Testing System With Hybrid Control
,”
Operative Tech. Orthop.
,
10
(
4
), pp.
246
253
.10.1016/S1048-6666(00)80024-5
23.
Howard
,
R. A.
,
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Corr
,
D. T.
,
Shrive
,
N. G.
,
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Beveridge
,
J. E.
,
Marchuk
,
L. L.
, and
Frank
,
C. B.
,
2007
, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
743
749
.10.1115/1.2768983
24.
Werner
,
F. W.
,
Palmer
,
A. K.
,
Somerset
,
J. H.
,
Tong
,
J. J.
,
Gillison
,
D. B.
,
Fortino
,
M. D.
, and
Short
,
W. H.
,
1996
, “
Wrist Joint Motion Simulator
,”
J. Orthop. Res.
,
14
(
4
), pp.
639
646
.10.1002/jor.1100140420
25.
Werner
,
F. W.
,
Short
,
W. H.
,
Fortino
,
M. D.
, and
Palmer
,
A. K.
,
1997
, “
The Relative Contribution of Selected Carpal Bones to Global Wrist Motion During Simulated Planar and Out-of-Plane Wrist Motion
,”
J. Hand Surg. [Am]
,
22
(
4
), pp.
708
713
.10.1016/S0363-5023(97)80133-5
26.
Werner
,
F. W.
,
Green
,
J. K.
,
Short
,
W. H.
, and
Masaoka
,
S.
,
2004
, “
Scaphoid and Lunate Motion During a Wrist Dart Throw Motion
,”
J. Hand Surg. Am.
,
29
(
3
), pp.
418
422
.10.1016/j.jhsa.2004.01.018
27.
Patterson
,
R. M.
,
Nicodemus
,
C. L.
,
Viegas
,
S. F.
,
Elder
,
K. W.
, and
Rosenblatt
,
J.
,
1998
, “
High-Speed, Three-Dimensional Kinematic Analysis of the Normal Wrist
,”
J. Hand Surg. [Am.]
,
23
(
3
), pp.
446
453
.10.1016/S0363-5023(05)80462-9
28.
Short
,
W. H.
,
Werner
,
F. W.
,
Green
,
J. K.
,
Weiner
,
M. M.
, and
Masaoka
,
S.
,
2002
, “
The Effect of Sectioning the Dorsal Radiocarpal Ligament and Insertion of a Pressure Sensor Into the Radiocarpal Joint on Scaphoid and Lunate Kinematics
,”
J. Hand Surg. [Am.]
,
27
(
1
), pp.
68
76
.10.1053/jhsu.2002.30074
29.
Short
,
W. H.
,
Werner
,
F. W.
,
Green
,
J. K.
, and
Masaoka
,
S.
,
2005
, “
Biomechanical Evaluation of the Ligamentous Stabilizers of the Scaphoid and Lunate: Part II
,”
J. Hand Surg. [Am.]
,
30
(
1
), pp.
24
34
.10.1016/j.jhsa.2004.09.015
30.
Erhart
,
S.
,
Lutz
,
M.
,
Arora
,
R.
, and
Schmoelz
,
W.
,
2012
, “
Measurement of Intraarticular Wrist Joint Biomechanics With a Force Controlled System
,”
Med. Eng. Phys.
,
34
(
7
), pp.
900
905
.10.1016/j.medengphy.2011.10.003
31.
Kane
,
P. M.
,
Vopat
,
B. G.
,
Got
,
C.
,
Mansuripur
,
K.
, and
Akelman
,
E.
,
2014
, “
The Effect of Supination and Pronation on Wrist Range of Motion
,”
J. Wrist Surg.
,
3
(
3
), pp.
187
191
.10.1055/s-0034-1384749
32.
Got
,
C.
,
Vopat
,
B. G.
,
Mansuripur
,
P. K.
,
Kane
,
P. M.
,
Weiss
,
A. P. C.
, and
Crisco
,
J. J.
,
2016
, “
The Effects of Partial Carpal Fusions on Wrist Range of Motion
,”
J. Hand Surg. Eur. Vol.
,
41
(
5
), pp.
479
483
.10.1177/1753193415607827
33.
Formica
,
D.
,
Charles
,
S. K.
,
Zollo
,
L.
,
Guglielmelli
,
E.
,
Hogan
,
N.
, and
Krebs
,
H. I.
,
2012
, “
The Passive Stiffness of the Wrist and Forearm
,”
J. Neurophysiol.
,
108
(
4
), pp.
1158
1166
.10.1152/jn.01014.2011
34.
An
,
K.-N.
,
2007
, “
Tendon Excursion and Gliding: Clinical Impacts From Humble Concepts
,”
J. Biomech.
,
40
(
4
), pp.
713
718
.10.1016/j.jbiomech.2006.10.008
35.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “Method for Registration of 3-D Shapes,”
SPIE Proc.
, 1611, pp. 586–606.10.1117/12.57955
36.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Sys. Meas. Control.
,
103
(2), pp.
126
133
.10.1115/1.3139652
37.
Wu
,
G.
,
van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
38.
Youm
,
Y.
, and
Flatt
,
A. E.
,
1980
, “
Kinematics of the Wrist
,”
Clin. Orthop.
,
149
, pp.
21
32
.
39.
Kobayashi
,
M.
,
Garcia-Elias
,
M.
,
Nagy
,
L.
,
Ritt
,
M. J.
,
An
,
K. N.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1997
, “
Axial Loading Induces Rotation of the Proximal Carpal Row Bones Around Unique Screw-Displacement Axes
,”
J. Biomech.
,
30
(
11–12
), pp.
1165
1167
.10.1016/S0021-9290(97)00080-8
40.
Viegas
,
S. F.
,
Patterson
,
R. M.
, and
Ward
,
K.
,
1995
, “
Extrinsic Wrist Ligaments in the Pathomechanics of Ulnar Translation Instability
,”
J. Hand Surg. Am.
,
20
(
2
), pp.
312
318
.10.1016/S0363-5023(05)80032-2
41.
Bresina
,
S. J.
,
Vannier
,
M. W.
,
Logan
,
S. E.
, and
Weeks
,
P. M.
,
1986
, “
Three-Dimensional Wrist Imaging: Evaluation of Functional and Pathologic Anatomy by Computer
,”
Clin. Plast. Surg.
,
13
(
3
), pp.
389
405
.https://europepmc.org/article/med/3755087
42.
Logan
,
S. E.
, and
Groszewski
,
P.
,
1989
, “Dynamic Wrist Motion Analysis Using Six Degree of Freedom Sensors.” Biomed. Sci. Instrum., 25, pp. 213–220.
43.
Patterson
,
R. M.
,
Nicodemus
,
C. L.
,
Viegas
,
S. F.
,
Elder
,
K. W.
, and
Rosenblatt
,
J.
,
1997
, “
Normal Wrist Kinematics and the Analysis of the Effect of Various Dynamic External Fixators for Treatment of Distal Radius Fractures
,”
Hand Clin.
,
13
(
1
), pp.
129
141
.https://europepmc.org/article/med/9048188
44.
Gupta
,
A.
, and
Moosawi
,
N. A.
,
2005
, “
How Much Can Carpus Rotate Axially? An In Vivo Study
,”
Clin Biomech (Bristol, Avon)
,
20
(
2
), pp.
172
176
.10.1016/j.clinbiomech.2004.09.014
45.
Kapandji
,
A. I.
,
Martin-Bouyer
,
Y.
, and
Verdeille
,
S.
,
1991
, “
Three-Dimensional CT Study of the Carpus Under Pronation-Supination Constraints. [French]
,”
Ann. de Chirurgie de la Main et du Membre Superieur
,
10
(
1
), pp.
36
47
.10.1016/S0753-9053(05)80036-5
46.
Ritt
,
M. J. P. F.
,
Stuart
,
P. R.
,
Berglund
,
L. J.
,
Linscheid
,
R. L.
,
Conney
,
W. P.
, and
An
,
K.-N.
,
1995
, “
Rotational Stability of the Carpus Relative to the Forearm
,”
J. Hand Surg. [Am.]
,
20
(
2
), pp.
305
311
.10.1016/S0363-5023(05)80031-0
47.
Roux
,
J. L.
,
Micallef
,
J. P.
,
Rabischong
,
P.
, and
Allieu
,
Y.
,
1996
, “
Transmission of Pronation-Supination Movements in the Wrist
,”
Ann. Chir. Main Memb. Super.
,
15
, pp.
167
180
.10.1016/S0753-9053(96)80006-8
48.
Moritomo
,
H.
,
Apergis
,
E. P.
,
Herzberg
,
G.
,
Werner
,
F. W.
,
Wolfe
,
S. W.
, and
Garcia-Elias
,
M.
,
2007
, “
2007 IFSSH Committee Report of Wrist Biomechanics Committee: Biomechanics of the So-Called Dart-Throwing Motion of the Wrist
,”
J. Hand Surg. Am.
,
32
(
9
), pp.
1447
1453
.10.1016/j.jhsa.2007.08.014
49.
Moritomo
,
H.
,
Apergis
,
E. P.
,
Garcia-Elias
,
M.
,
Werner
,
F. W.
, and
Wolfe
,
S. W.
,
2014
, “
International Federation of Societies for Surgery of the Hand 2013 Committee's Report on Wrist Dart-Throwing Motion
,”
J. Hand Surg. Am.
,
39
(
7
), pp.
1433
1439
.10.1016/j.jhsa.2014.02.035
50.
Palmer
,
A. K.
,
Werner
,
F. W.
,
Murphy
,
D.
, and
Glisson
,
R.
,
1985
, “
Functional Wrist Motion: A Biomechanical Study
,”
J. Hand Surg. Am.
,
10
(
1
), pp.
39
46
.10.1016/S0363-5023(85)80246-X
You do not currently have access to this content.