Abstract

To characterize the dynamics of internal soft organs and external anatomical structures, this paper presents a system that combines medical ultrasound imaging with an optical tracker and a vertical exciter that imparts whole-body vibrations on seated subjects. The spatial and temporal accuracy of the system was validated using a phantom with calibrated internal structures, resulting in 0.224 mm maximum root-mean-square (r.m.s.) position error and 13 ms maximum synchronization error between sensors. In addition to the dynamics of the head and sternum, stomach dynamics were characterized by extracting the centroid of the stomach from the ultrasound images. The system was used to characterize the subject-specific body dynamics as well as the intrasubject variabilities caused by excitation pattern (frequency up-sweep, down-sweep, and white noise, 1–10 Hz), excitation amplitude (1 and 2 m/s2 r.m.s.), seat compliance (rigid and soft), and stomach filling (empty and 500 mL water). Human subjects experiments (n = 3) yielded preliminary results for the frequency response of the head, sternum, and stomach. The method presented here provides the first detailed in vivo characterization of internal and external human body dynamics. Tissue dynamics characterized by the system can inform design of vehicle structures and adaptive control of seat and suspension systems, as well as validate finite element models for predicting passenger comfort in the early stages of vehicle design.

References

References
1.
Schmäl
,
F.
,
2013
, “
Neuronal Mechanisms and the Treatment of Motion Sickness
,”
Pharmacology
,
91
(
3–4
), pp.
229
241
.10.1159/000350185
2.
Oosterveld
,
W. J.
,
1995
, “
Motion Sickness
,”
J. Travel Med.
,
2
(
3
), pp.
182
185
.10.1111/j.1708-8305.1995.tb00649.x
3.
Griffin
,
M. J.
,
1990
,
Handbook of Human Vibration
,
Academic Press
,
Cambridge, MA
.
4.
Coermann
,
R. R.
,
1962
, “
The Mechanical Impedance of the Human Body in Sitting and Standing Position at Low Frequencies
,”
Hum. Factors
,
4
(
5
), pp.
227
253
.10.1177/001872086200400502
5.
Zhou
,
Z.
, and
Griffin
,
M. J.
,
2014
, “
Response of the Seated Human Body to Whole-Body Vertical Vibration: Biodynamic Responses to Sinusoidal and Random Vibration
,”
Ergonomics
,
57
(
5
), pp.
693
713
.10.1080/00140139.2014.898798
6.
Nawayseh
,
N.
, and
Griffin
,
M. J.
,
2003
, “
Non-Linear Dual-Axis Biodynamic Response to Vertical Whole-Body Vibration
,”
J. Sound Vib.
,
268
(
3
), pp.
503
523
.10.1016/S0022-460X(03)00254-2
7.
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2002
, “
Non-Linear Characteristics in the Dynamic Responses of Seated Subjects Exposed to Vertical Whole-Body Vibration
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
527
532
.10.1115/1.1499959
8.
Mansfield
,
N. J.
,
Holmlund
,
P.
,
Lundström
,
R.
,
Lenzuni
,
P.
, and
Nataletti
,
P.
,
2006
, “
Effect of Vibration Magnitude, Vibration Spectrum and Muscle Tension on Apparent Mass and Cross Axis Transfer Functions During Whole-Body Vibration Exposure
,”
J. Biomech.
,
39
(
16
), pp.
3062
3070
.10.1016/j.jbiomech.2005.09.024
9.
Liu
,
C.
,
Qiu
,
Y.
, and
Griffin
,
M. J.
,
2017
, “
Dynamic Forces Over the Interface Between a Seated Human Body and a Rigid Seat During Vertical Whole-Body Vibration
,”
J. Biomech.
,
61
, pp.
176
182
.10.1016/j.jbiomech.2017.07.015
10.
Zimmermann
,
C. L.
, and
Cook
,
T. M.
,
1997
, “
Effects of Vibration Frequency and Postural Changes on Human Responses to Seated Whole-Body Vibration Exposure
,”
Int. Arch. Occup. Environ. Health
,
69
(
3
), pp.
165
179
.10.1007/s004200050133
11.
Fairley
,
T. E.
, and
Griffin
,
M. J.
,
1989
, “
The Apparent Mass of the Seated Human Body: Vertical Vibration
,”
J. Biomech.
,
22
(
2
), pp.
81
94
.10.1016/0021-9290(89)90031-6
12.
Mansfield
,
N. J.
, and
Griffin
,
M. J.
,
1998
, “
Effect of Magnitude of Vertical Whole-Body Vibration on Absorbed Power for the Seated Human Body
,”
J. Sound Vib.
,
215
(
4
), pp.
813
825
.10.1006/jsvi.1998.1596
13.
Smith
,
S. D.
,
1994
, “
Nonlinear Resonance Behavior in the Human Exposed to Whole-Body Vibration
,”
Shock Vib.
,
1
(
5
), pp.
439
450
.10.1155/1994/429525
14.
Magid
,
E. B.
,
Coermann
,
R. R.
, and
Ziegenruecker
,
G. H.
,
1962
, “
Human Tolerance to Whole Body Sinusoidal Vibration
,”
Aerosp. Med.
,
31
(
11
), pp.
915
924
.
15.
Jones
,
A. J.
, and
Saunders
,
D. J.
,
1972
, “
Equal Comfort Contours for Whole Body Vertical, Pulsed Sinusoidal Vibration
,”
J. Sound Vib.
,
23
(
1
), pp.
1
14
.10.1016/0022-460X(72)90785-7
16.
Basri
,
B.
, and
Griffin
,
M. J.
,
2013
, “
Predicting Discomfort From Whole-Body Vertical Vibration When Sitting With an Inclined Backrest
,”
Appl. Ergonom.
,
44
(
3
), pp.
423
434
.10.1016/j.apergo.2012.10.006
17.
Zhou
,
Z.
, and
Griffin
,
M. J.
,
2017
, “
Response of the Seated Human Body to Whole-Body Vertical Vibration: Discomfort Caused by Mechanical Shocks
,”
Ergonomics
,
60
(
3
), pp.
347
357
.10.1080/00140139.2016.1164902
18.
Huang
,
Y.
, and
Griffin
,
M. J.
,
2014
, “
The Discomfort Produced by Noise and Whole-Body Vertical Vibration Presented Separately and in Combination
,”
Ergonomics
,
57
(
11
), pp.
1724
1738
.10.1080/00140139.2014.943683
19.
Bovenzi
,
M.
, and
Hulshof
,
C. T. J.
,
1999
, “
An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain (1986-1997)
,”
Int. Arch. Occup. Environ. Health
,
72
(
6
), pp.
351
365
.10.1007/s004200050387
20.
Coermann
,
R. R.
,
Ziegenruecker
,
G. H.
,
Wittwer
,
A. L.
, and
Von Gierke
,
H. E.
,
1960
, “
The Passive Dynamic Mechanical Properties of the Human Thorax-Abdomen System and of the Whole Body System
,”
Aerosp. Med.
,
31
(
6
), pp.
227
253
.
21.
Muksian
,
R.
, and
Nash Jr.
,
C. D.
,
1974
, “
A Model for the Response of Seated Humans to Sinusoidal Displacements of the Seat
,”
J. Biomech.
,
7
(
3
), pp.
209
215
.10.1016/0021-9290(74)90011-6
22.
Liang
,
C. C.
, and
Chiang
,
C. F.
,
2008
, “
Modeling of a Seated Human Body Exposed to Vertical Vibrations in Various Automotive Postures
,”
Ind. Health
,
46
(
2
), pp.
125
137
.10.2486/indhealth.46.125
23.
Tamaoki
,
G.
,
Yoshimura
,
T.
,
Kuriyama
,
K.
, and
Nakai
,
K.
,
2008
, “
Modeling of Spinal Column of Seated Human Body Under Exposure to Whole-Body Vibration
,”
J. Syst. Des. Dyn.
,
2
(
6
), pp.
1327
1338
.
24.
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2001
, “
Modelling the Dynamic Mechanisms Associated With the Principal Resonance of the Seated Human Body
,”
Clin. Biomech.
,
16
(
Suppl. 1
), pp.
S31
S34
.10.1016/S0268-0033(00)00099-1
25.
Yoshimura
,
T.
,
Nakai
,
K.
, and
Tamaoki
,
G.
,
2005
, “
Multi-Body Dynamics Modelling of Seated Human Body Under Exposure to Whole-Body Vibration
,”
Ind. Health
,
43
(
3
), pp.
441
447
.10.2486/indhealth.43.441
26.
Joshi
,
G.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2010
, “
Whole-Body Vibratory Response Study Using a Nonlinear Multi-Body Model of Seat-Occupant System With Viscoelastic Flexible Polyurethane Foam
,”
Ind. Health
,
48
(
5
), pp.
663
674
.10.2486/indhealth.MSWBVI-13
27.
Kitazaki
,
S.
, and
Griffin
,
M. J.
,
1997
, “
A Model Analysis of Whole-Body Vertical Vibration, Using a Finite Element Model of the Human Body
,”
J. Sound Vib.
,
200
(
1
), pp.
83
103
.10.1006/jsvi.1996.0674
28.
Mikic
,
I.
,
Krucinski
,
S.
, and
Thomas
,
J. D.
,
1998
, “
Segmentation and Tracking in Echocardiographic Sequences: Active Contours Guided by Optical Flow Estimates
,”
IEEE Trans. Med. Imaging
,
17
(
2
), pp.
274
284
.10.1109/42.700739
29.
Luca
,
V. D.
,
Székely
,
G.
, and
Tanner
,
C.
,
2015
, “
Estimation of Large-Scale Organ Motion in B-Mode Ultrasound Image Sequences: A Survey
,”
Ultrasound Med. Biol.
,
41
(
12
), pp.
3044
3062
.10.1016/j.ultrasmedbio.2015.07.022
30.
Chan
,
T. F.
, and
Vese
,
L. A.
,
2001
, “
Active Contours Without Edges
,”
IEEE Trans. Image Process.
,
10
(
2
), pp.
266
277
.10.1109/83.902291
31.
Kass
,
M.
,
Witkin
,
A.
, and
Terzopoulos
,
D.
,
1988
, “
Snakes: Active Contour Models
,”
Int. J. Comput. Vision
,
1
(
4
), pp.
321
331
.10.1007/BF00133570
32.
Lasso
,
A.
,
Heffter
,
T.
,
Rankin
,
A.
,
Pinter
,
C.
,
Ungi
,
T.
, and
Fichtinger
,
G.
,
2014
, “
Plus: Open-Source Toolkit for Ultrasound-Guided Intervention Systems
,”
IEEE Trans. Biomed. Eng.
,
61
(
10
), pp.
2527
2537
.10.1109/TBME.2014.2322864
33.
Bruder
,
R.
,
Griese
,
F.
,
Ernst
,
F.
, and
Schweikard
,
A.
,
2011
, “
High-Accuracy Ultrasound Target Localization for Hand-Eye Calibration Between Optical Tracking Systems and Three-Dimensional Ultrasound
,”
Inf. Aktuel.
, pp.
179
183
.10.1007/978-3-642-19335-4
34.
Marinetto
,
E.
,
García-Mato
,
D.
,
García
,
A.
,
Martínez
,
S.
,
Desco
,
M.
, and
Pascau
,
J.
,
2018
, “
Multicamera Optical Tracker Assessment for Computer Aided Surgery Applications
,”
IEEE Access
,
6
, pp.
64359
64370
.10.1109/ACCESS.2018.2878323
35.
Elfring
,
R.
,
de la Fuente
,
M.
, and
Radermacher
,
K.
,
2010
, “
Assessment of Optical Localizer Accuracy for Computer Aided Surgery Systems
,”
Comput. Aided Surg.
,
15
(
1–3
), pp.
1
12
.10.3109/10929081003647239
36.
Xiao
,
G.
,
Bonmati
,
E.
,
Thompson
,
S.
,
Evans
,
J.
,
Hipwell
,
J.
,
Nikitichev
,
D.
,
Gurusamy
,
K.
,
Ourselin
,
S.
,
Hawkes
,
D. J.
,
Davidson
,
B.
, and
Clarkson
,
M. J.
,
2018
, “
Electromagnetic Tracking in Image-Guided Laparoscopic Surgery: Comparison With Optical Tracking and Feasibility Study of a Combined Laparoscope and Laparoscopic Ultrasound System
,”
Med. Phys.
,
45
(
11
), pp.
5094
5104
.10.1002/mp.13210
37.
ISO,
1997
, “
Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration, Part 1: General Requirements
,” 2nd ed., American National Standards Institute, New York, Standard No.
2631
1
.
38.
Siefert
,
A.
,
2016
, “
Occupant Comfort—A Mixture of Joint Angles, Seat Pressure and Tissue Loads
,”
SAE
Paper No. 2016-01-1438.10.4271/2016-01-1438
39.
Scherer
,
M. A.
, and
Geller
,
D. A.
,
2015
, “
New Preoperative Images, Surgical Planning, and Navigation
,”
Imaging and Visualization in the Modern Operating Room
,
Y.
Fong
,
P.
Giulianotti
,
J.
Lewis
,
B.
Groot Koerkamp
, and
T.
Reiner
, eds.,
Springer
,
New York
.
You do not currently have access to this content.