Abstract

In this work, we provide a quantitative assessment of the biomechanical and geometric features that characterize abdominal aortic aneurysm (AAA) models generated from 19 Asian and 19 Caucasian diameter-matched AAA patients. 3D patient-specific finite element models were generated and used to compute peak wall stress (PWS), 99th percentile wall stress (99th WS), and spatially averaged wall stress (AWS) for each AAA. In addition, 51 global geometric indices were calculated, which quantify the wall thickness, shape, and curvature of each AAA. The indices were correlated with 99th WS (the only biomechanical metric that exhibited significant association with geometric indices) using Spearman's correlation and subsequently with multivariate linear regression using backward elimination. For the Asian AAA group, 99th WS was highly correlated (R2 = 0.77) with three geometric indices, namely tortuosity, intraluminal thrombus volume, and area-averaged Gaussian curvature. Similarly, 99th WS in the Caucasian AAA group was highly correlated (R2 = 0.87) with six geometric indices, namely maximum AAA diameter, distal neck diameter, diameter–height ratio, minimum wall thickness variance, mode of the wall thickness variance, and area-averaged Gaussian curvature. Significant differences were found between the two groups for ten geometric indices; however, no differences were found for any of their respective biomechanical attributes. Assuming maximum AAA diameter as the most predictive metric for wall stress was found to be imprecise: 24% and 28% accuracy for the Asian and Caucasian groups, respectively. This investigation reveals that geometric indices other than maximum AAA diameter can serve as predictors of wall stress, and potentially for assessment of aneurysm rupture risk, in the Asian and Caucasian AAA populations.

References

1.
Spark
,
J. I.
,
Baker
,
J. L.
,
Vowden
,
P.
, and
Wilkinson
,
D.
,
2001
, “
Epidemiology of Abdominal Aortic Aneurysms in the Asian Community
,”
Br. J. Surg.
,
88
(
3
), pp.
382
384
.10.1046/j.1365-2168.2001.01709.x
2.
Hobbs
,
S. D.
,
Sam
,
R. C.
,
Bhatti
,
A.
,
Rehman
,
A.
,
Wilmink
,
A. B.
,
Adam
,
D. J.
, and
Bradbury
,
A. W.
,
2006
, “
The Low Incidence of Surgery for Non-Cardiac Vascular Disease in UK Asians May Be Explained by a Low Prevalence of Disease
,”
Eur. J. Vasc. Endovasc. Surg.
,
32
(
5
), pp.
494
499
.10.1016/j.ejvs.2006.03.010
3.
Salem
,
M. K.
,
Rayt
,
H. S.
,
Hussey
,
G.
,
Rafelt
,
S.
,
Nelson
,
C. P.
,
Sayers
,
R. D.
,
Naylor
,
A. R.
, and
Nasim
,
A.
,
2009
, “
Should Asian Men Be Included in Abdominal Aortic Aneurysm Screening Programmes?
,”
Eur. J. Vasc. Endovasc. Surg.
,
38
(
6
), pp.
748
749
.10.1016/j.ejvs.2009.07.012
4.
Laughlin
,
G. A.
,
Allison
,
M. A.
,
Jensky
,
N. E.
,
Aboyans
,
V.
,
Wong
,
N. D.
,
Detrano
,
R.
, and
Criqui
,
M. H.
,
2011
, “
Abdominal Aortic Diameter and Vascular Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis
,”
Eur. J. Vasc. Endovasc. Surg.
,
41
(
4
), pp.
481
487
.10.1016/j.ejvs.2010.12.015
5.
Yii
,
M. K.
,
2003
, “
Epidemiology of Abdominal Aortic Aneurysm in an Asian Population
,”
ANZ J. Surg.
,
73
(
6
), pp.
393
395
.10.1046/j.1445-2197.2003.t01-1-02657.x
6.
Oh
,
S. H.
,
Chang
,
S. A.
,
Jang
,
S. Y.
,
Park
,
S. J.
,
Choi
,
J. O.
,
Lee
,
S. C.
,
Park
,
S. W.
,
Oh
,
J. K.
, and
Kim
,
D. K.
,
2010
, “
Routine Screening for Abdominal Aortic Aneurysm During Clinical Transthoracic Echocardiography in a Korean Population
,”
Echocardiography
,
27
(
10
), pp.
1182
1187
.10.1111/j.1540-8175.2010.01223.x
7.
Joh
,
J. H.
,
Park
,
Y. Y.
,
Cho
,
S. S.
, and
Park
,
H. C.
,
2016
, “
National Trends for Open and Endovascular Repair of Aneurysms in Korea: 2004-2013
,”
Exp. Ther. Med.
,
12
(
5
), pp.
3333
3338
.10.3892/etm.2016.3781
8.
Lee
,
S. H.
,
Chang
,
S. A.
,
Jang
,
S. Y.
,
Lee
,
S. C.
,
Song
,
Y. B.
,
Park
,
S. W.
,
Choi
,
S. H.
,
Gwon
,
H. C.
,
Oh
,
J. K.
, and
Kim
,
D. K.
,
2015
, “
Screening for Abdominal Aortic Aneurysm During Transthoracic Echocardiography in Patients With Significant Coronary Artery Disease
,”
Yonsei Med. J.
,
56
(
1
), pp.
38
44
.10.3349/ymj.2015.56.1.38
9.
Han
,
S. A.
,
Joh
,
J. H.
, and
Park
,
H. C.
,
2017
, “
Risk Factors for Abdominal Aortic Aneurysm in the Korean Population
,”
Ann. Vasc. Surg.
,
41
, pp.
135
140
.10.1016/j.avsg.2016.08.044
10.
Li
,
W.
,
Luo
,
S.
,
Luo
,
J.
,
Liu
,
Y.
,
Ning
,
B.
,
Huang
,
W.
,
Xue
,
L.
, and
Chen
,
J.
,
2017
, “
Predictors Associated With Increased Prevalence of Abdominal Aortic Aneurysm in Chinese Patients With Atherosclerotic Risk Factors
,”
Eur. J. Vasc. Endovasc. Surg.
,
54
(
1
), pp.
43
49
.10.1016/j.ejvs.2017.04.004
11.
Deery
,
S. E.
,
O'Donnell
,
T. F. X.
,
Shean
,
K. E.
,
Darling
,
J. D.
,
Soden
,
P. A.
,
Hughes
,
K.
,
Wang
,
G. J.
, and
Schermerhorn
,
M. L.
, and
Society for Vascular Surgery Vascular Quality, I.
,
2018
, “
Racial Disparities in Outcomes After Intact Abdominal Aortic Aneurysm Repair
,”
J. Vasc. Surg.
,
67
(
4
), pp.
1059
1067
.10.1016/j.jvs.2017.07.138
12.
Mladenovic
,
A. S.
,
Markovic
,
Z. Z.
, and
Hyodoh
,
H. H.
,
2012
, “
Anatomic Differences of the Distal Aorta With Dilatation or Aneurysm Between Patients From Asia and Europe as Seen on CT Imaging
,”
Eur. J. Radiol.
,
81
(
9
), pp.
1990
1997
.10.1016/j.ejrad.2011.05.014
13.
Banzic
,
I.
,
Lu
,
Q.
,
Zhang
,
L.
,
Stepak
,
H.
,
Davidovic
,
L.
,
Oszkinis
,
G.
,
Mladenovic
,
A.
,
Markovic
,
M.
,
Rancic
,
Z.
,
Jing
,
Z.
, and
Brankovic
,
M.
,
2016
, “
Morphological Differences in the Aorto-Iliac Segment in AAA Patients of Caucasian and Asian Origin
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
6
), pp.
783
789
.10.1016/j.ejvs.2015.12.017
14.
Cheng
,
S. W.
,
Ting
,
A. C.
,
Ho
,
P.
, and
Poon
,
J. T.
,
2004
, “
Aortic Aneurysm Morphology in Asians: Features Affecting Stent-Graft Application and Design
,”
J. Endovasc. Ther.
,
11
(
6
), pp.
605
612
.10.1583/04-1268R.1
15.
Masuda
,
E. M.
,
Caps
,
M. T.
,
Singh
,
N.
,
Yorita
,
K.
,
Schneider
,
P. A.
,
Sato
,
D. T.
,
Eklof
,
B.
,
Nelken
,
N. A.
, and
Kistner
,
R. L.
,
2004
, “
Effect of Ethnicity on Access and Device Complications During Endovascular Aneurysm Repair
,”
J. Vasc. Surg.
,
40
(
1
), pp.
24
29
.10.1016/j.jvs.2004.02.035
16.
Bae
,
T.
,
Lee
,
T.
,
Jung
,
I. M.
,
Ha
,
J.
,
Chung
,
J. K.
, and
Kim
,
S. J.
,
2008
, “
Limited Feasibility in Endovascular Aneurysm Repair Using Currently Available Graft in Korea
,”
J. Korean Med. Sci.
,
23
(
4
), pp.
651
656
.10.3346/jkms.2008.23.4.651
17.
Park
,
K. H.
,
Lim
,
C.
,
Lee
,
J. H.
, and
Yoo
,
J. S.
,
2011
, “
Suitability of Endovascular Repair With Current Stent Grafts for Abdominal Aortic Aneurysm in Korean Patients
,”
J. Korean Med. Sci.
,
26
(
8
), pp.
1047
1051
.10.3346/jkms.2011.26.8.1047
18.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
,
Washington
,
C. B.
,
Muluk
,
S. C.
,
Finol
,
E. A.
, and
Rodriguez
,
J. F.
,
2013
, “
Biological, Geometric and Biomechanical Factors Influencing Abdominal Aortic Aneurysm Rupture Risk: A Comprehensive Review
,”
Recent Pat. Med. Imaging
,
3
(
1
), pp.
44
59
.10.2174/1877613211303010006
19.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.10.1007/s10439-013-0786-6
20.
Chauhan
,
S. S.
,
Gutierrez
,
C. A.
,
Thirugnanasambandam
,
M.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2017
, “
The Association Between Geometry and Wall Stress in Emergently Repaired Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1908
1916
.10.1007/s10439-017-1837-1
21.
Muluk
,
S. L.
,
Muluk
,
P. D.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2017
, “
On the Use of Geometric Modeling to Predict Aortic Aneurysm Rupture
,”
Ann. Vasc. Surg.
,
44
, pp.
190
196
.10.1016/j.avsg.2017.05.014
22.
Canchi
,
T.
,
Saxena
,
A.
,
Ng
,
E. Y. K.
,
Pwee
,
E. C. H.
, and
Narayanan
,
S.
,
2018
, “
Application of Fluid–Structure Interaction Methods to Estimate the Mechanics of Rupture in Asian Abdominal Aortic Aneurysms
,”
BioNanoScience
,
8
(
4
), pp.
1035
1044
.10.1007/s12668-018-0554-z
23.
Canchi
,
T.
,
Ng
,
E. Y.
,
Narayanan
,
S.
, and
Finol
,
E. A.
,
2018
, “
On the Assessment of Abdominal Aortic Aneurysm Rupture Risk in the Asian Population Based on Geometric Attributes
,”
Proc. Inst. Mech. Eng. H
,
232
(
9
), pp.
922
929
.10.1177/0954411918794724
24.
Parikh
,
S. A.
,
Gomez
,
R.
,
Thirugnanasambandam
,
M.
,
Chauhan
,
S. S.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2018
, “
Decision Tree Based Classification of Abdominal Aortic Aneurysms Using Geometry Quantification Measures
,”
Ann. Biomed. Eng.
,
46
(
12
), pp.
2135
2147
.10.1007/s10439-018-02116-w
25.
Urrutia
,
J.
,
Roy
,
A.
,
Raut
,
S. S.
,
Anton
,
R.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2018
, “
Geometric Surrogates of Abdominal Aortic Aneurysm Wall Mechanics
,”
Med. Eng. Phys.
,
59
, pp.
43
49
.10.1016/j.medengphy.2018.06.007
26.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
,
1998
, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
,
27
(
4
), pp.
632
639
.10.1016/S0741-5214(98)70227-7
27.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
28.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.10.1067/mva.2003.213
29.
Giannoglou
,
G.
,
Giannakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
,
Parcharidis
,
G.
, and
Louridas
,
G.
,
2006
, “
Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion
,”
Angiology
,
57
(
4
), pp.
487
494
.10.1177/0003319706290741
30.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblare
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021023
.10.1115/1.2898830
31.
Gasser
,
T. C.
,
Nchimi
,
A.
,
Swedenborg
,
J.
,
Roy
,
J.
,
Sakalihasan
,
N.
,
Böckler
,
D.
, and
Hyhlik-Dürr
,
A.
,
2014
, “
A Novel Strategy to Translate the Biomechanical Rupture Risk of Abdominal Aortic Aneurysms to Their Equivalent Diameter Risk: Method and Retrospective Validation
,”
Eur. J. Vasc. Endovasc. Surg.
,
47
(
3
), pp.
288
295
.10.1016/j.ejvs.2013.12.018
32.
Speelman
,
L.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
Hellenthal
,
F. A.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
van de Vosse
,
F. N.
,
2008
, “
Patient-Specific AAA Wall Stress Analysis: 99-Percentile Versus Peak Stress
,”
Eur. J. Vasc. Endovasc. Surg.
,
36
(
6
), pp.
668
676
.10.1016/j.ejvs.2008.09.007
33.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N. Y. Acad. Sci.
,
1085
(
1
), pp.
11
21
.10.1196/annals.1383.046
34.
Polzer
,
S.
, and
Gasser
,
T. C.
,
2015
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms Based on a Novel Probabilistic Rupture Risk Index
,”
J. R. Soc. Interface
,
12
(
113
), p.
20150852
.10.1098/rsif.2015.0852
35.
Leemans
,
E. L.
,
Willems
,
T. P.
,
van der Laan
,
M. J.
,
Slump
,
C. H.
, and
Zeebregts
,
C. J.
,
2017
, “
Biomechanical Indices for Rupture Risk Estimation in Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
,
24
(
2
), pp.
254
261
.10.1177/1526602816680088
36.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhamme
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med Phys
,
37
(
2
), pp.
638
648
.10.1118/1.3284976
37.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2014
, “
The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics
,”
Computational Biomechanics for Medicine
,
B.
Doyle
,
K.
Miller
,
A.
Wittek
, and
P. M. F.
Nielsen
, eds.,
Springer
,
New York
, pp.
69
86
.
38.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
28
(
2
), pp.
168
176
.10.1016/j.ejvs.2004.03.029
39.
Wu
,
W.
,
Rengarajan
,
B.
,
Thirugnanasambandam
,
M.
,
Parikh
,
S.
,
Gomez
,
R.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2019
, “
Wall Stress and Geometry Measures in Electively Repaired Abdominal Aortic Aneurysms
,”
Ann Biomed Eng
,
47
(
7
), pp.
1611
1625
.10.1007/s10439-019-02261-w
40.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.10.1007/s10439-010-0175-3
41.
Lee
,
K.
,
Zhu
,
J.
,
Shum
,
J.
,
Zhang
,
Y.
,
Muluk
,
S. C.
,
Chandra
,
A.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2013
, “
Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
562
576
.10.1007/s10439-012-0691-4
42.
Pini
,
A.
,
Stamm
,
A.
, and
Vantini
,
S.
,
2018
, “
Hotelling's T2 in Separable Hilbert Spaces
,”
J. Multivariate Anal.
,
167
, pp.
284
305
.10.1016/j.jmva.2018.05.007
43.
fdahotelling
,
2017
, “
fdahotelling—R Package, Global Inference for Functional Data Analysis in R
,” R Foundation for Statistical Computing, Vienna, Austria, accessed Aug. 22, 2019, https://github.com/astamm/fdahotelling
44.
Team
,
R. C.
,
2018
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing, Vienna, Austria, accessed Aug. 22, 2019, http://www.R-project.org/
45.
Hochberg
,
Y.
,
1988
, “
A Sharper Bonferroni Procedure for Multiple Tests of Significance
,”
Biometrika
,
75
(
4
), pp.
800
802
.10.1093/biomet/75.4.800
46.
Chen
,
S. Y.
,
Feng
,
Z.
, and
Yi
,
X.
,
2017
, “
A General Introduction to Adjustment for Multiple Comparisons
,”
J. Thorac. Dis.
,
9
(
6
), pp.
1725
1729
.10.21037/jtd.2017.05.34
47.
Jackson
,
B. M.
, and
Carpenter
,
J. P.
,
2009
, “
Devices Used for Endovascular Aneurysm Repair: Past, Present, and Future
,”
Semin. Intervent. Radiol.
,
26
(
1
), pp.
39
43
.10.1055/s-0029-1208382
48.
Fillinger
,
M. F.
,
Racusin
,
J.
,
Baker
,
R. K.
,
Cronenwett
,
J. L.
,
Teutelink
,
A.
,
Schermerhorn
,
M. L.
,
Zwolak
,
R. M.
,
Powell
,
R. J.
,
Walsh
,
D. B.
, and
Rzucidlo
,
E. M.
,
2004
, “
Anatomic Characteristics of Ruptured Abdominal Aortic Aneurysm on Conventional CT Scans: Implications for Rupture Risk
,”
J. Vasc. Surg.
,
39
(
6
), pp.
1243
1252
.10.1016/j.jvs.2004.02.025
49.
Kontopodis
,
N.
,
Tavlas
,
E.
,
Georgakarakos
,
E.
,
Galanakis
,
N.
,
Chronis
,
C.
,
Tsetis
,
D.
, and
Ioannou
,
C. V.
,
2018
, “
Has Anatomic Complexity of Abdominal Aortic Aneurysms Undergoing Open Surgical Repair Changed After the Introduction of Endovascular Treatment? Systematic Review and Meta-Analysis of Comparative Studies
,”
Ann. Vasc. Surg.
,
52
, pp.
292
301
.10.1016/j.avsg.2018.03.047
50.
Lee
,
K.
,
Hossain
,
S.
,
Sabalbal
,
M.
,
Dubois
,
L.
,
Duncan
,
A.
,
DeRose
,
G.
, and
Power
,
A. H.
,
2017
, “
Explaining Endograft Shortening During Endovascular Repair of Abdominal Aortic Aneurysms in Severe Aortoiliac Tortuosity
,”
J. Vasc. Surg.
,
65
(
5
), pp.
1297
1304
.10.1016/j.jvs.2016.09.041
51.
Kristmundsson
,
T.
,
Sonesson
,
B.
,
Dias
,
N.
,
Malina
,
M.
, and
Resch
,
T.
,
2014
, “
Anatomic Suitability for Endovascular Repair of Abdominal Aortic Aneurysms and Possible Benefits of Low Profile Delivery Systems
,”
Vascular
,
22
(
2
), pp.
112
115
.10.1177/1708538112473980
52.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
53.
Shang
,
E. K.
,
Nathan
,
D. P.
,
Woo
,
E. Y.
,
Fairman
,
R. M.
,
Wang
,
G. J.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, 3rd.
, and
Jackson
,
B. M.
,
2015
, “
Local Wall Thickness in Finite Element Models Improves Prediction of Abdominal Aortic Aneurysm Growth
,”
J. Vasc. Surg.
,
61
(
1
), pp.
217
223
.10.1016/j.jvs.2013.08.032
54.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.10.1016/j.ejvs.2010.04.003
55.
Mower
,
W. R.
,
Baraff
,
L. J.
, and
Sneyd
,
J.
,
1993
, “
Stress Distributions in Vascular Aneurysms: Factors Affecting Risk of Aneurysm Rupture
,”
J. Surg. Res.
,
55
(
2
), pp.
155
161
.10.1006/jsre.1993.1123
56.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
(
3
), pp.
570
576
.10.1016/j.jvs.2005.10.072
57.
Boonruangsri
,
P.
,
Suwannapong
,
B.
,
Rattanasuwan
,
S.
, and
Iamsaard
,
S.
,
2015
, “
Aneurysm, Tortuosity and Kinking of Abdominal Aorta and Iliac Arteries in Thai Cadavers
,”
Int. J. Morphol.
,
33
(
1
), pp.
73
76
.10.4067/S0717-95022015000100012
58.
Han
,
H. C.
,
2012
, “
Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms
,”
J. Vasc. Res.
,
49
(
3
), pp.
185
197
.10.1159/000335123
59.
Speelman
,
L.
,
2009
,
Biomechanical Analysis for Abdominal Aortic Aneurysm Risk Stratification
,
Maastricht University
, Maastricht, The Netherlands.
60.
Stenbaek
,
J.
,
Kalin
,
B.
, and
Swedenborg
,
J.
,
2000
, “
Growth of Thrombus May Be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
20
(
5
), pp.
466
469
.10.1053/ejvs.2000.1217
61.
Kazi
,
M.
,
Thyberg
,
J.
,
Religa
,
P.
,
Roy
,
J.
,
Eriksson
,
P.
,
Hedin
,
U.
, and
Swedenborg
,
J.
,
2003
, “
Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall
,”
J. Vasc. Surg.
,
38
(
6
), pp.
1283
1292
.10.1016/S0741-5214(03)00791-2
62.
Stevens
,
R. R. F.
,
Grytsan
,
A.
,
Biasetti
,
J.
,
Roy
,
J.
,
Lindquist Liljeqvist
,
M.
, and
Gasser
,
T. C.
,
2017
, “
Biomechanical Changes During Abdominal Aortic Aneurysm Growth
,”
PLoS One
,
12
(
11
), p.
e0187421
.10.1371/journal.pone.0187421
63.
Pappu
,
S.
,
Dardik
,
A.
,
Tagare
,
H.
, and
Gusberg
,
R. J.
,
2008
, “
Beyond Fusiform and Saccular: A Novel Quantitative Tortuosity Index May Help Classify Aneurysm Shape and Predict Aneurysm Rupture Potential
,”
Ann. Vasc. Surg.
,
22
(
1
), pp.
88
97
.10.1016/j.avsg.2007.09.004
64.
Lo
,
R. C.
, and
Schermerhorn
,
M. L.
,
2016
, “
Abdominal Aortic Aneurysms in Women
,”
J. Vasc. Surg.
,
63
(
3
), pp.
839
844
.10.1016/j.jvs.2015.10.087
65.
Mower
,
W. R.
,
Quinones
,
W. J.
, and
Gambhir
,
S. S.
,
1997
, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
,
26
(
4
), pp.
602
608
.10.1016/S0741-5214(97)70058-2
66.
Di Martino
,
E.
,
Mantero
,
S.
,
Inzoli
,
F.
,
Melissano
,
G.
,
Astore
,
D.
,
Chiesa
,
R.
, and
Fumero
,
R.
,
1998
, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation and Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc. Surg.
,
15
(
4
), pp.
290
299
.10.1016/S1078-5884(98)80031-2
67.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.10.1067/mva.2002.126087
68.
Thubrikar
,
M. J.
,
Robicsek
,
F.
,
Labrosse
,
M.
,
Chervenkoff
,
V.
, and
Fowler
,
B. L.
,
2003
, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilation and Stress
,”
J. Cardiovasc. Surg. (Torino)
,
44
(
1
), pp.
67
77
.https://www.minervamedica.it/en/journals/cardiovascular-surgery/article.php?cod=R37Y2003N01A0067
69.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
,
2006
, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
,
5
(
1
), p.
33
.10.1186/1475-925X-5-33
70.
Vande Geest
,
J. P.
,
Wang
,
D. H.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.10.1007/s10439-006-9132-6
71.
Li
,
Z. Y.
,
J
,
U. K.-I.
,
Tang
,
T. Y.
,
Soh
,
E.
,
See
,
T. C.
, and
Gillard
,
J. H.
,
2008
, “
Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
47
(
5
), pp.
928
935
.10.1016/j.jvs.2008.01.006
72.
Bluestein
,
D.
,
Dumont
,
K.
,
De Beule
,
M.
,
Ricotta
,
J.
,
Impellizzeri
,
P.
,
Verhegghe
,
B.
, and
Verdonck
,
P.
,
2009
, “
Intraluminal Thrombus and Risk of Rupture in Patient Specific Abdominal Aortic Aneurysm—FSI Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
73
81
.10.1080/10255840802176396
You do not currently have access to this content.