Abstract

Although mutations in the Lamin A/C gene (LMNA) cause a variety of devastating diseases, the pathological mechanism is often unknown. Lamin A/C proteins play a crucial role in forming a meshwork under the nuclear membrane, providing the nucleus with mechanical integrity and interacting with other proteins for gene regulation. Most LMNA mutations result in heart diseases, including some types that primarily have heart disease as the main pathology. In this study, we used cells from patients with different LMNA mutations that primarily lead to heart disease. Indeed, it is a mystery why a mutation to the protein in every nucleus of the body manifests as a disease of primarily the heart in these patients. Here, we aimed to investigate if strains mimicking those within the myocardial environment are sufficient to cause differences in cells with and without the LMNA mutation. To test this, a stretcher device was used to induce cyclic strain upon cells, and viability/proliferation, cytoskeleton and extracellular matrix organization, and nuclear morphology were quantified. The properties of cells with Hutchinson-Gilford progeria syndrome (HGPS) were found to be significantly different from all other cell lines and were mostly in line with previous findings. However, the properties of cells from patients who primarily had heart diseases were not drastically different when compared to individuals without the LMNA mutation. Our results indicated that cyclic strain alone was insufficient to cause any significant differences that could explain the mechanisms that lead to heart diseases in these patients with LMNA mutations.

References

1.
Brayson
,
D.
, and
Shanahan
,
C. M.
,
2017
, “
Current Insights Into LMNA Cardiomyopathies: Existing Models and Missing LINCs
,”
Nucleus
,
8
(
1
), pp.
17
33
.10.1080/19491034.2016.1260798
2.
Parnaik
,
V. K.
,
2008
, “
Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases
,”
Int. Rev. Cell Mol. Biol.
,
266
, pp.
157
206
.10.1016/S1937-6448(07)66004-3
3.
Gruenbaum
,
Y.
, and
Medalia
,
O.
,
2015
, “
Lamins: The Structure and Protein Complexes
,”
Curr. Opin. Cell Biol.
,
32
, pp.
7
12
.10.1016/j.ceb.2014.09.009
4.
Shimi
,
T.
,
Kittisopikul
,
M.
,
Tran
,
J.
,
Goldman
,
A. E.
,
Adam
,
S. A.
,
Zheng
,
Y.
,
Jaqaman
,
K.
, and
Goldman
,
R. D.
,
2015
, “
Structural Organization of Nuclear Lamins A, C, B1, and B2 Revealed by Superresolution Microscopy
,”
Mol. Biol. Cell
,
26
(
22
), pp.
4075
4086
.10.1091/mbc.E15-07-0461
5.
Andres
,
V.
, and
Gonzalez
,
J. M.
,
2009
, “
Role of A-Type Lamins in Signaling, Transcription, and Chromatin Organization
,”
J. Cell Biol.
,
187
(
7
), pp.
945
957
.10.1083/jcb.200904124
6.
Gonzalez
,
J. M.
,
Navarro-Puche
,
A.
,
Casar
,
B.
,
Crespo
,
P.
, and
Andres
,
V.
,
2008
, “
Fast Regulation of AP-1 Activity Through Interaction of Lamin a/C, ERK1/2, and c-Fos at the Nuclear Envelope
,”
J. Cell Biol.
,
183
(
4
), pp.
653
666
.10.1083/jcb.200805049
7.
Zhong
,
N.
,
Radu
,
G.
,
Ju
,
W.
, and
Brown
,
W. T.
,
2005
, “
Novel Progerin-Interactive Partner Proteins hnRNP E1, EGF, Mel 18, and UBC9 Interact With Lamin A/C
,”
Biochem. Biophys. Res. Commun.
,
338
(
2
), pp.
855
861
.10.1016/j.bbrc.2005.10.020
8.
Zaragoza
,
M. V.
,
Fung
,
L.
,
Jensen
,
E.
,
Oh
,
F.
,
Cung
,
K.
,
McCarthy
,
L. A.
,
Tran
,
C. K.
,
Hoang
,
V.
,
Hakim
,
S. A.
, and
Grosberg
,
A.
,
2016
, “
Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family With Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death
,”
PLoS One
,
11
(
5
), p.
e0155421
.10.1371/journal.pone.0155421
9.
Zaragoza
,
M. V.
,
Hakim
,
S. A.
,
Hoang
,
V.
, and
Elliott
,
A. M.
,
2017
, “
Heart-Hand Syndrome IV: A Second Family With LMNA-Related Cardiomyopathy and Brachydactyly
,”
Clin. Genet.
,
91
(
3
), pp.
499
500
.10.1111/cge.12870
10.
Zaragoza
,
M.
,
Nguyen
,
C.
,
Widyastuti
,
H.
,
McCarthy
,
L.
, and
Grosberg
,
A.
,
2017
, “
Dupuytren's and Ledderhose Diseases in a Family With LMNA-Related Cardiomyopathy and a Novel Variant in the ASTE1 Gene
,”
Cells
,
6
(
4
), p.
40
.10.3390/cells6040040
11.
Broers
,
J. L. V.
,
Peeters
,
E. A. G.
,
Kuijpers
,
H. J. H.
,
Endert
,
J.
,
Bouten
,
C. V. C.
,
Oomens
,
C. W. J.
,
Baaijens
,
F. P. T.
, and
Ramaekers
,
F. C. S.
,
2004
, “
Decreased Mechanical Stiffness in LMNA-/- Cells is Caused by Defective Nucleo-Cytoskeletal Integrity: Implications for the Development of Laminopathies
,”
Hum. Mol. Genet.
,
13
(
21
), pp.
2567
2580
.10.1093/hmg/ddh295
12.
Lammerding
,
J.
,
Schulze
,
P. C.
,
Takahashi
,
T.
,
Kozlov
,
S.
,
Sullivan
,
T.
,
Kamm
,
R. D.
,
Stewart
,
C. L.
, and
Lee
,
R. T.
,
2004
, “
Lamin A/C Deficiency Causes Defective Nuclear Mechanics and Mechanotransduction
,”
J. Clin. Invest.
,
113
(
3
), pp.
370
378
.10.1172/JCI200419670
13.
Lammerding
,
J.
,
Fong
,
L. G.
,
Ji
,
J. Y.
,
Reue
,
K.
,
Stewart
,
C. L.
,
Young
,
S. G.
, and
Lee
,
R. T.
,
2006
, “
Lamins a and C but Not Lamin B1 Regulate Nuclear Mechanics
,”
J. Biol. Chem.
,
281
(
35
), pp.
25768
25780
.10.1074/jbc.M513511200
14.
Sullivan
,
T.
,
Escalante-Alcalde
,
D.
,
Bhatt
,
H.
,
Anver
,
M.
,
Bhat
,
N.
,
Nagashima
,
K.
,
Stewart
,
C. L.
, and
Burke
,
B.
,
1999
, “
Loss of A-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy
,”
J. Cell Biol.
,
147
(
5
), pp.
913
919
.10.1083/jcb.147.5.913
15.
Zwerger
,
M.
,
Jaalouk
,
D. E.
,
Lombardi
,
M. L.
,
Isermann
,
P.
,
Mauermann
,
M.
,
Dialynas
,
G.
,
Herrmann
,
H.
,
Wallrath
,
L. L.
, and
Lammerding
,
J.
,
2013
, “
Myopathic Lamin Mutations Impair Nuclear Stability in Cells and Tissue and Disrupt Nucleo-Cytoskeletal Coupling
,”
Hum. Mol. Genet.
,
22
(
12
), pp.
2335
2349
.10.1093/hmg/ddt079
16.
Core
,
J. Q.
,
Mehrabi
,
M.
,
Robinson
,
Z. R.
,
Ochs
,
A. R.
,
McCarthy
,
L. A.
,
Zaragoza
,
M. V.
, and
Grosberg
,
A.
,
2017
, “
Age of Heart Disease Presentation and Dysmorphic Nuclei in Patients With LMNA Mutations
,”
PLoS One
,
12
(
11
), p.
e0188256
.10.1371/journal.pone.0188256
17.
Stoppel
,
W. L.
,
Kaplan
,
D. L.
, and
Black
,
L. D.
,
2016
, “
Electrical and Mechanical Stimulation of Cardiac Cells and Tissue Constructs
,”
Adv. Drug Deliv. Rev.
,
96
, pp.
135
155
.10.1016/j.addr.2015.07.009
18.
Eriksson
,
M.
,
Brown
,
W. T.
,
Gordon
,
L. B.
,
Glynn
,
M. W.
,
Singer
,
J.
,
Scott
,
L.
,
Erdos
,
M. R.
,
Robbins
,
C. M.
,
Moses
,
T. Y.
,
Berglund
,
P.
,
Dutra
,
A.
,
Pak
,
E.
,
Durkin
,
S.
,
Csoka
,
A. B.
,
Boehnke
,
M.
,
Glover
,
T. W.
, and
Collins
,
F. S.
,
2003
, “
Recurrent de Novo Point Mutations in Lamin a Cause Hutchinson-Gilford Progeria Syndrome
,”
Nature
,
423
(
6937
), pp.
293
298
.10.1038/nature01629
19.
Grosberg
,
A.
,
Alford
,
P. W.
,
McCain
,
M. L.
, and
Parker
,
K. K.
,
2011
, “
Ensembles of Engineered Cardiac Tissues for Physiological and Pharmacological Study: Heart on a Chip
,”
Lab Chip
,
11
(
24
), pp.
4165
4173
.10.1039/c1lc20557a
20.
Hurlburt
,
H. M.
,
Aurigemma
,
G. P.
,
Hill
,
J. C.
,
Narayanan
,
A.
,
Gaasch
,
W. H.
,
Vinch
,
C. S.
,
Meyer
,
T. E.
, and
Tighe
,
D. A.
,
2007
, “
Direct Ultrasound Measurement of Longitudinal, Circumferential, and Radial Strain Using 2-Dimensional Strain Imaging in Normal Adults
,”
Echocardiography
,
24
(
7
), pp.
723
731
.10.1111/j.1540-8175.2007.00460.x
21.
Ng
,
A. C. T.
,
Delgado
,
V.
,
Bertini
,
M.
,
van der Meer
,
R. W.
,
Rijzewijk
,
L. J.
,
Shanks
,
M.
,
Nucifora
,
G.
,
Smit
,
J. W. A.
,
Diamant
,
M.
,
Romijn
,
J. A.
,
de Roos
,
A.
,
Leung
,
D. Y.
,
Lamb
,
H. J.
, and
Bax
,
J. J.
,
2009
, “
Findings From Left Ventricular Strain and Strain Rate Imaging in Asymptomatic Patients With Type 2 Diabetes Mellitus
,”
Am. J. Cardiol.
,
104
(
10
), pp.
1398
1401
.10.1016/j.amjcard.2009.06.063
22.
Gjesdal
,
O.
,
Hopp
,
E.
,
Vartdal
,
T.
,
Lunde
,
K.
,
Helle-Valle
,
T.
,
Aakhus
,
S.
,
Smith
,
H.-J.
,
Ihlen
,
H.
, and
Edvardsen
,
T.
,
2007
, “
Global Longitudinal Strain Measured by Two-Dimensional Speckle Tracking Echocardiography is Closely Related to Myocardial Infarct Size in Chronic Ischaemic Heart Disease
,”
Clin. Sci.
,
113
(
6
), pp.
287
296
.10.1042/CS20070066
23.
Kouzu
,
H.
,
Yuda
,
S.
,
Muranaka
,
A.
,
Doi
,
T.
,
Yamamoto
,
H.
,
Shimoshige
,
S.
,
Hase
,
M.
,
Hashimoto
,
A.
,
Saitoh
,
S.
,
Tsuchihashi
,
K.
,
Miura
,
T.
,
Watanabe
,
N.
, and
Shimamoto
,
K.
,
2011
, “
Left Ventricular Hypertrophy Causes Different Changes in Longitudinal, Radial, and Circumferential Mechanics in Patients With Hypertension: A Two-Dimensional Speckle Tracking Study
,”
J. Am. Soc. Echocardiography
,
24
(
2
), pp.
192
199
.10.1016/j.echo.2010.10.020
24.
Serri
,
K.
,
Reant
,
P.
,
Lafitte
,
M.
,
Berhouet
,
M.
,
Le Bouffos
,
V.
,
Roudaut
,
R.
, and
Lafitte
,
S.
,
2006
, “
Global and Regional Myocardial Function Quantification by Two-Dimensional Strain: Application in Hypertrophic Cardiomyopathy
,”
J. Am. Coll. Cardiol.
,
47
(
6
), pp.
1175
1181
.10.1016/j.jacc.2005.10.061
25.
Wang
,
J.
,
Khoury
,
D. S.
,
Yue
,
Y.
,
Torre-Amione
,
G.
, and
Nagueh
,
S. F.
,
2007
, “
Preserved Left Ventricular Twist and Circumferential Deformation, but Depressed Longitudinal and Radial Deformation in Patients With Diastolic Heart Failure
,”
Eur. Heart J.
,
29
(
10
), pp.
1283
1289
.10.1093/eurheartj/ehn141
26.
Waldman
,
L. K.
,
Fung
,
Y. C.
, and
Covell
,
J. W.
,
1985
, “
Transmural Myocardial Deformation in the Canine Left-Ventricle—Normal Invivo 3-Dimensional Finite Strains
,”
Circ. Res.
,
57
(
1
), pp.
152
163
.10.1161/01.RES.57.1.152
27.
Yingchoncharoen
,
T.
,
Agarwal
,
S.
,
Popovic
,
Z. B.
, and
Marwick
,
T. H.
,
2013
, “
Normal Ranges of Left Ventricular Strain: A Meta-Analysis
,”
J. Am. Soc. Echocardiogr.
,
26
(2), pp.
185
191
.10.1016/j.echo.2012.10.008
28.
Kasner
,
M.
,
Gaub
,
R.
,
Sinning
,
D.
,
Westermann
,
D.
,
Steendijk
,
P.
,
Hoffmann
,
W.
,
Schultheiss
,
H.-P.
, and
Tschöpe
,
C.
,
2010
, “
Global Strain Rate Imaging for the Estimation of Diastolic Function in HFNEF Compared With Pressure-Volume Loop Analysis
,”
Eur. J. Echocardiography
,
11
(
9
), pp.
743
751
.10.1093/ejechocard/jeq060
29.
Leitman
,
M.
,
Lysyansky
,
P.
,
Sidenko
,
S.
,
Shir
,
V.
,
Peleg
,
E.
,
Binenbaum
,
M.
,
Kaluski
,
E.
,
Krakover
,
R.
, and
Vered
,
Z.
,
2004
, “
Two-Dimensional Strain—A Novel Software for Real-Time Quantitative Echocardiographic Assessment of Myocardial Function
,”
J. Am. Soc. Echocardiography
,
17
(
10
), pp.
1021
1029
.10.1016/j.echo.2004.06.019
30.
Nguyen
,
M.-D.
,
Tinney
,
J. P.
,
Ye
,
F.
,
Elnakib
,
A. A.
,
Yuan
,
F.
,
El-Baz
,
A.
,
Sethu
,
P.
,
Keller
,
B. B.
, and
Giridharan
,
G. A.
,
2015
, “
Effects of Physiologic Mechanical Stimulation on Embryonic Chick Cardiomyocytes Using a Microfluidic Cardiac Cell Culture Model
,”
Anal. Chem.
,
87
(
4
), pp.
2107
2113
.10.1021/ac503716z
31.
Ghafar-Zadeh
,
E.
,
Waldeisen
,
J. R.
, and
Lee
,
L. P.
,
2011
, “
Engineered Approaches to the Stem Cell Microenvironment for Cardiac Tissue Regeneration
,”
Lab Chip
,
11
(
18
), pp.
3031
3048
.10.1039/c1lc20284g
32.
Marsano
,
A.
,
Conficconi
,
C.
,
Lemme
,
M.
,
Occhetta
,
P.
,
Gaudiello
,
E.
,
Votta
,
E.
,
Cerino
,
G.
,
Redaelli
,
A.
, and
Rasponi
,
M.
,
2016
, “
Beating Heart on a Chip: A Novel Microfluidic Platform to Generate Functional 3D Cardiac Microtissues
,”
Lab Chip
,
16
(
3
), pp.
599
610
.10.1039/C5LC01356A
33.
Matsuda
,
T.
,
Takahashi
,
K.
,
Nariai
,
T.
,
Ito
,
T.
,
Takatani
,
T.
,
Fujio
,
Y.
, and
Azuma
,
J.
,
2004
, “
N-Cadherin-Mediated Cell Adhesion Determines the Plasticity for Cell Alignment in Response to Mechanical Stretch in Cultured Cardiomyocytes
,”
Biochem. Biophys. Res. Commun.
,
326
(
1
), pp.
228
232
.10.1016/j.bbrc.2004.11.019
34.
Salameh
,
A.
,
Wustmann
,
A.
,
Karl
,
S.
,
Blanke
,
K.
,
Apel
,
D.
,
Rojas-Gomez
,
D.
,
Franke
,
H.
,
Mohr
,
F. W.
,
Janousek
,
J.
, and
Dhein
,
S.
,
2010
, “
Cyclic Mechanical Stretch Induces Cardiomyocyte Orientation and Polarization of the Gap Junction Protein connexin43
,”
Circ. Res.
,
106
(
10
), pp.
1592
1602
.10.1161/CIRCRESAHA.109.214429
35.
Greiner
,
A. M.
,
Chen
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2013
, “
Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells
,”
PLoS One
,
8
(
10
), p.
e77328
.10.1371/journal.pone.0077328
36.
Chen
,
N. Y.
,
Kim
,
P.
,
Weston
,
T. A.
,
Edillo
,
L.
,
Tu
,
Y.
,
Fong
,
L. G.
, and
Young
,
S. G.
,
2018
, “
Fibroblasts Lacking Nuclear Lamins Do Not Have Nuclear Blebs or Protrusions but Nevertheless Have Frequent Nuclear Membrane Ruptures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
40
), pp.
10100
10105
.10.1073/pnas.1812622115
37.
Choi
,
S.
,
Wang
,
W.
,
Ribeiro
,
A. J. S.
,
Kalinowski
,
A.
,
Gregg
,
S. Q.
,
Opresko
,
P. L.
,
Niedernhofer
,
L. J.
,
Rohde
,
G. K.
, and
Dahl
,
K. N.
,
2011
, “
Computational Image Analysis of Nuclear Morphology Associated With Various Nuclear-Specific Aging Disorders
,”
Nucleus
,
2
(
6
), pp.
570
579
.10.4161/nucl.2.6.17798
38.
Booth-Gauthier
,
E. A.
,
Du
,
V.
,
Ghibaudo
,
M.
,
Rape
,
A. D.
,
Dahl
,
K. N.
, and
Ladoux
,
B.
,
2013
, “
Hutchinson-Gilford Progeria Syndrome Alters Nuclear Shape and Reduces Cell Motility in Three Dimensional Model Substrates
,”
Integr. Biol.
,
5
(
3
), pp.
569
577
.10.1039/c3ib20231c
39.
Lele
,
T. P.
,
Dickinson
,
R. B.
, and
Gundersen
,
G. G.
,
2018
, “
Mechanical Principles of Nuclear Shaping and Positioning
,”
J. Cell Biol.
,
217
(
10
), pp.
3330
3342
.10.1083/jcb.201804052
40.
Lee
,
H.
,
Adams
,
W. J.
,
Alford
,
P. W.
,
McCain
,
M. L.
,
Feinberg
,
A. W.
,
Sheehy
,
S. P.
,
Goss
,
J. A.
, and
Parker
,
K. K.
,
2015
, “
Cytoskeletal Prestress Regulates Nuclear Shape and Stiffness in Cardiac Myocytes
,”
Exp. Biol. Med. (Maywood)
,
240
(
11
), pp.
1543
1554
.10.1177/1535370215583799
You do not currently have access to this content.