Abstract

Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics. Then, to evaluate the models, the predicted secondary joint kinematics were compared to in vivo joint kinematics extracted from biplanar X-ray images (acquired using slot scanning technology) during a quasi-static lunge. To construct the models, bone, ligament, and cartilage structures were segmented from MRI scans of four subjects. The models were then used to simulate lunges based on motion capture and force place data. Accurate estimates of TF secondary joint kinematics and PF translations were found: translations were predicted with a mean difference (MD) and standard error (SE) of 2.13 ± 0.22 mm between all trials and measures, while rotations had a MD ± SE of 8.57 ± 0.63 deg. Ligament and contact forces were also reported. The presented modeling workflow and the resulting knee joint model have potential to aid in the understanding of subject-specific biomechanics and simulating the effects of surgical treatment and/or external devices on functional knee mechanics on an individual level.

References

1.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
–1
54
.10.1016/j.clinbiomech.2006.09.005
2.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME
J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
3.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
4.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.10.1115/1.4023320
5.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.10.1115/1.4026359
6.
Thelen
,
D. G.
,
Won Choi
,
K.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.10.1115/1.4026358
7.
Halonen
,
K. S.
,
Dzialo
,
C. M.
,
Mannisi
,
M.
,
Venäläinen
,
M. S.
,
De Zee
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Workflow Assessing the Effect of Gait Alterations on Stresses in the Medial Tibial Cartilage—Combined Musculoskeletal Modelling and Finite Element Analysis
,”
Sci. Rep.
,
7
, p.
17396
.10.1038/s41598-017-17228-x
8.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
,
2015
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
,
29
(
2
), pp.
99
106
.10.1055/s-0035-1558858
9.
Lund
,
M. E.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2015
, “
Scaling of Musculoskeletal Models From Static and Dynamic Trials
,”
Int. Biomech.
,
2
(
1
), pp.
1
11
.10.1080/23335432.2014.993706
10.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F.
, and
Verdonschot
,
N.
,
2015
, “
TLEM 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
,
48
(
5
), pp.
734
741
.10.1016/j.jbiomech.2014.12.034
11.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D’Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.10.1016/j.jbiomech.2013.09.005
12.
Carbone
,
V.
,
van der Krogt
,
M. M.
,
Koopman
,
H. F.
, and
Verdonschot
,
N.
,
2012
, “
Sensitivity of Subject-Specific Models to Errors in Musculo-Skeletal Geometry
,”
J. Biomech.
,
45
(
14
), pp.
2476
2480
.10.1016/j.jbiomech.2012.06.026
13.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
14.
Andersen
,
M. S.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Nolte
,
D.
, and
Rasmussen
,
J.
,
2017
, “
Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling
,”
ASME J. Biomech. Eng.
,
139
(
9
), p.
091001
.10.1115/1.4037100
15.
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Smith
,
C. R.
, and
Thelen
,
D. G.
,
2015
, “
Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2675
2685
.10.1007/s10439-015-1326-3
16.
Smith
,
C. R.
,
Vignos
,
M. F.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
, and
Thelen
,
D. G.
,
2016
, “
The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021017
.10.1115/1.4032464
17.
Hu
,
J.
,
Chen
,
Z.
,
Xin
,
H.
,
Zhang
,
Q.
, and
Jin
,
Z.
,
2018
, “
Musculoskeletal Multibody Dynamics Simulation of the Contact Mechanics and Kinematics of a Natural Knee Joint During a Walking Cycle
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
5
), pp.
508
519
.10.1177/0954411918767695
18.
Smith
,
C. R.
,
Brandon
,
S. C. E.
, and
Thelen
,
D. G.
,
2019
, “
Can Altered Neuromuscular Coordination Restore Soft Tissue Loading Patterns in Anterior Cruciate Ligament and Menisci Deficient Knees During Walking?
,”
J. Biomech.
,
82
, pp.
124
133
.10.1016/j.jbiomech.2018.10.008
19.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon Properties: Models, Scaling, and Application to Biomechanics and Motor Control
,”
CRC Crit. Rev. Biomed. Eng.
,
17
(4), pp.
359
411
.https://www.ncbi.nlm.nih.gov/pubmed/2676342
20.
Roberts
,
T. J.
, and
Gabaldón
,
A. M.
,
2008
, “
Interpreting Muscle Function From EMG: Lessons Learned From Direct Measurements of Muscle Force
,”
Integr. Comp. Biol.
,
48
(
2
), pp.
312
320
.10.1093/icb/icn056
21.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2013
, “
Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces During Gait?
,”
J. Orthop. Res.
,
31
(
6
), pp.
921
929
.10.1002/jor.22304
22.
Kaiser
,
J.
,
Monawer
,
A.
,
Chaudhary
,
R.
,
Johnson
,
K. M.
,
Wieben
,
O.
,
Kijowski
,
R.
, and
Thelen
,
D. G.
,
2016
, “
Accuracy of Model-Based Tracking of Knee Kinematics and Cartilage Contact Measured by Dynamic Volumetric MRI
,”
Med. Eng. Phys.
,
38
(
10
), pp.
1131
1135
.10.1016/j.medengphy.2016.06.016
23.
Shapiro
,
L. M.
, and
Gold
,
G. E.
,
2012
, “
MRI of Weight Bearing and Movement
,”
Osteoarthritis Cartilage
,
20
(
2
), pp.
69
78
.10.1016/j.joca.2011.11.003
24.
Westphal
,
C.
,
Schmitz
,
A.
,
Reeder
,
S. B.
, and
Thelen
,
D. G.
,
2013
, “
Load-Dependent Variations in Knee Kinematics Measured With Dynamic MRI
,”
J. Biomech.
,
46
(
12
), pp.
2045
2052
.10.1016/j.jbiomech.2013.05.027
25.
Draper
,
C. E.
,
Besier
,
T. F.
,
Fredericson
,
M.
,
Santos
,
J. M.
,
Beaupre
,
G. S.
,
Delp
,
S. L.
, and
Gold
,
G. E.
,
2011
, “
Differences in Patellofemoral Kinematics Between Weight-Bearing and Non-Weight-Bearing Conditions in Patients With Patellofemoral Pain
,”
J. Orthop. Res.
,
29
(
3
), pp.
312
317
.10.1002/jor.21253
26.
Chen
,
B.
,
Lambrou
,
T.
,
Offiah
,
A.
,
Fry
,
M.
, and
Todd-Pokropek
,
A.
,
2011
, “
Combined MR Imaging Towards Subject-Specific Knee Contact Analysis
,”
Vis. Comput.
,
27
(
2
), pp.
121
128
.10.1007/s00371-010-0535-x
27.
Draper
,
C. E.
,
Santos
,
J. M.
,
Kourtis
,
L. C.
,
Besier
,
T. F.
,
Fredericson
,
M.
,
Beaupre
,
G. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2008
, “
Feasibility of Using Real-Time MRI to Measure Joint Kinematics in 1.5T and Open-Bore 0.5T Systems
,”
J. Magn. Reson. Imaging
,
28
(
1
), pp.
158
166
.10.1002/jmri.21413
28.
Wybier
,
M.
, and
Bossard
,
P.
,
2013
, “
Musculoskeletal Imaging in Progress: The EOS Imaging System
,”
Jt. Bone Spine
,
80
(
3
), pp.
238
243
.10.1016/j.jbspin.2012.09.018
29.
Varadarajan
,
K. M.
,
Gill
,
T. J.
,
Freiberg
,
A. A.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Gender Differences in Trochlear Groove Orientation and Rotational Kinematics of Human Knees
,”
J. Orthop. Res.
,
27
(
7
), pp.
871
878
.10.1002/jor.20844
30.
Dzialo
,
C. M.
,
Pedersen
,
P. H.
,
Simonsen
,
C. W.
,
Jensen
,
K. K.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2018
, “
Development and Validation of a Subject-Specific Moving-Axis Tibiofemoral Joint Model Using MRI and EOS Imaging During a Quasi-Static Lunge
,”
J. Biomech.
,
72
, pp.
71
80
.10.1016/j.jbiomech.2018.02.032
31.
Zeighami
,
A.
,
Dumas
,
R.
,
Kanhonou
,
M.
,
Hagemeister
,
N.
,
Lavoie
,
F.
,
de Guise
,
J. A.
, and
Aissaoui
,
R.
,
2017
, “
Tibio-Femoral Joint Contact in Healthy and Osteoarthritic Knees During Quasi-Static Squat: A Bi-Planar X-Ray Analysis
,”
J. Biomech.
,
53
, pp.
178
184
.10.1016/j.jbiomech.2017.01.015
32.
Peterfy
,
C. G.
,
Schneider
,
E.
, and
Nevitt
,
M.
,
2008
, “
The Osteoarthritis Initiative: Report on the Design Rationale for the Magnetic Resonance Imaging Protocol for the Knee
,”
Osteoarthritis Cartilage
,
16
(
12
), pp.
1433
1441
.10.1016/j.joca.2008.06.016
33.
Balamoody
,
S.
,
Williams
,
T. G.
,
Waterton
,
J. C.
,
Bowes
,
M.
,
Hodgson
,
R.
,
Taylor
,
C. J.
, and
Hutchinson
,
C. E.
,
2010
, “
Comparison of 3T MR Scanners in Regional Cartilage-Thickness Analysis in Osteoarthritis: A Cross-Sectional Multicenter, Multivendor Study
,”
Arthritis Res. Ther.
,
12
(
5
), p.
R202
.10.1186/ar3174
34.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
35.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
, Salerno, Italy, pp.
129
136
.https://www.researchgate.net/publication/221210477_MeshLab_an_Open-Source_Mesh_Processing_Tool
36.
Redert
,
A.
,
Kaptein
,
B.
,
Reinders
,
M.
,
van den Eelaart
,
I.
, and
Hendriks
,
E.
,
1999
, “
Extraction of Semantic 3D Models of Human Faces From Stereoscopic Image Sequences
,”
Acta Stereol.
,
18
(2), pp.
255
264
.https://www.researchgate.net/publication/2239451_Extraction_Of_Semantic_3d_Models_Of_Human_Faces_From_Stereoscopic_Image_Sequences
37.
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Carbone
,
V.
,
Fluit
,
R.
,
Vigneron
,
L. M.
,
Van Deun
,
J.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Evaluation of a Morphing Based Method to Estimate Muscle Attachment Sites of the Lower Extremity
,”
J. Biomech.
,
47
(
5
), pp.
1144
1150
.10.1016/j.jbiomech.2013.12.010
38.
Parr
,
W. C.
,
Chatterjee
,
H. J.
, and
Soligo
,
C.
,
2012
, “
Calculating the Axes of Rotation for the Subtalar and Talocrural Joints Using 3D Bone Reconstructions
,”
J. Biomech.
,
45
(
6
), pp.
1103
1107
.10.1016/j.jbiomech.2012.01.011
39.
Begon
,
M.
,
Andersen
,
M. S.
, and
Dumas
,
R.
,
2018
, “
Multibody Kinematic Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematic Review
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
030801
.10.1115/1.4038741
40.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
41.
Shelburne
,
K. B.
,
Michael
,
R.
,
Torry
,
A.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
42.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), p.
263
.10.1115/1.2894883
43.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
44.
Klein Horsman
,
M. D.
,
Koopman
,
H. F.
,
van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.10.1016/j.clinbiomech.2006.10.003
45.
Rasmussen
,
J.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Christensen
,
S. T.
,
Marek
,
C.
, and
Siebertz
,
K.
,
2005
, “
A General Method for Scaling Musculo-Skeletal Models
,”
International Symposium on Computer Simulation in Biomechanics
, Cleveland, OH, July 28–30.https://www.researchgate.net/publication/233782949_A_General_Method_for_Scaling_Musculo-Skeletal_Models
46.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
47.
Qi
,
W.
,
Hosseini
,
A.
,
Tsai
,
T. Y.
,
Li
,
J. S.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2013
, “
In Vivo Kinematics of the Knee During Weight Bearing High Flexion
,”
J. Biomech.
,
46
(
9
), pp.
1576
1582
.10.1016/j.jbiomech.2013.03.014
48.
Sheehan
,
F. T.
, and
Drace
,
J.
,
2000
, “
Human Patellar Tendon Strain: A Noninvasive, In Vivo Study
,”
Clin. Orthop. Relat. Res.
,
370
, pp.
201
207
.10.1097/00003086-200001000-00019
49.
Lund
,
M. E.
,
De Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.10.1177/0954411911431516
50.
Koh
,
Y.
,
Nam
,
J.
,
Son
,
J.
,
Lee
,
Y. H.
,
Kim
,
S.
, and
Kim
,
S.
,
2017
, “
The Effects of 30 Posterior Cruciate Ligament Deficiency on Posterolateral Corner Structures Under Gait- and Squat-Loading Conditions
,”
Bone Jt. Res.
,
6
(
1
), pp.
31
42
.10.1302/2046-3758.61.BJR-2016-0184.R1
51.
Trepczynski
,
A.
,
Kutzner
,
I.
,
Kornaropoulos
,
E.
,
Taylor
,
W. R.
,
Duda
,
G. N.
,
Bergmann
,
G.
, and
Heller
,
M. O.
,
2012
, “
Patellofemoral Joint Contact Forces During Activities With High Knee Flexion
,”
J. Orthop. Res.
,
30
(
3
), pp.
408
415
.10.1002/jor.21540
52.
Pedersen
,
D.
,
Vanheule
,
V.
,
Wirix-Speetjens
,
R.
,
Taylan
,
O.
,
Delport
,
H. P.
,
Scheys
,
L.
, and
Andersen
,
M. S.
,
2019
, “
A Novel Non-Invasive Method for Measuring Knee Joint Laxity in Four DOF: In Vitro Proof-of-Concept and Validation
,”
J. Biomech.
,
82
, pp.
62
69
.10.1016/j.jbiomech.2018.10.016
53.
Heinen
,
F.
,
Lund
,
M. E.
,
Rasmussen
,
J.
, and
De Zee
,
M.
,
2016
, “
Muscle-Tendon Unit Scaling Methods of Hill-Type Musculoskeletal Models: An Overview
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
10
), pp.
976
984
.10.1177/0954411916659894
54.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
55.
Marra
,
M. A.
,
Andersen
,
M. S.
,
Damsgaard
,
M.
,
Koopman
,
B. F.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2017
, “
Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081001
.10.1115/1.4036605
You do not currently have access to this content.