Abstract

Characterization of the biomechanical behavior of the optic nerve head (ONH) in response to intraocular pressure (IOP) elevation is important for understanding glaucoma susceptibility. In this study, we aimed to develop and validate a three-dimensional (3D) ultrasound elastographic technique to obtain mapping and visualization of the 3D distributive displacements and strains of the ONH and surrounding peripapillary tissue (PPT) during whole globe inflation from 15 to 30 mmHg. 3D scans of the posterior eye around the ONH were acquired through full tissue thickness with a high-frequency ultrasound system (50 MHz). A 3D cross-correlation-based speckle-tracking algorithm was used to compute tissue displacements at ∼30,000 kernels distributed within the region of interest (ROI), and the components of the strain tensors were calculated at each kernel by using least square estimation of the displacement gradients. The accuracy of displacement calculation was evaluated using simulated rigid-body translation on ultrasound radiofrequency (RF) data obtained from a porcine posterior eye. The accuracy of strain calculation was evaluated using finite element (FE) models. Three porcine eyes were tested showing that ONH deformation was heterogeneous with localized high strains. Substantial radial (i.e., through-thickness) compression was observed in the anterior ONH and out-of-plane (i.e., perpendicular to the surface of the shell) shear was shown to concentrate in the vicinity of ONH/PPT border. These preliminary results demonstrated the feasibility of this technique to achieve comprehensive 3D evaluation of the mechanical responses of the posterior eye, which may provide mechanistic insights into the regional susceptibility in glaucoma.

References

References
1.
Quigley
,
H. A.
,
1996
, “
Number of People With Glaucoma Worldwide
,”
Br. J. Ophthalmol.
,
80
(
5
), pp.
389
393
.10.1136/bjo.80.5.389
2.
Nickells
,
R. W.
,
Howell
,
G. R.
,
Soto
,
I.
, and
John
,
S. W. M.
,
2012
, “
Under Pressure: Cellular and Molecular Responses During Glaucoma, A Common Neurodegeneration With Axonopathy
,”
Annu. Rev. Neurosci.
,
35
(
1
), pp.
153
179
.10.1146/annurev.neuro.051508.135728
3.
Quigley
,
H. A.
,
Addicks
,
E. M.
,
Green
,
W. R.
, and
Maumenee
,
A. E.
,
1981
, “
Optic Nerve Damage in Human Glaucoma—II: The Site of Injury and Susceptibility to Damage
,”
Arch. Ophthalmol.
,
99
(
4
), pp.
635
649
.10.1001/archopht.1981.03930010635009
4.
Anderson
,
D. R.
,
Drance
,
S. M.
, and
Schulzer
,
M.
,
1998
, “
Comparison of Glaucomatous Progression Between Untreated Patients With Normal-Tension Glaucoma and Patients With Therapeutically Reduced Intraocular Pressures
,”
Am. J. Ophthalmol.
,
126
(
4
), pp.
487
497
.10.1016/S0002-9394(98)00223-2
5.
Heijl
,
A.
,
Leske
,
M. C.
,
Bengtsson
,
B.
,
Hyman
,
L.
,
Bengtsson
,
B.
, and
Hussein
,
M.
,
2002
, “
Reduction of Intraocular Pressure and Glaucoma Progression: Results From the Early Manifest Glaucoma Trial
,”
Arch. Ophthalmol.
,
120
(
10
), pp.
1268
1279
.10.1001/archopht.120.10.1268
6.
Burgoyne
,
C. F.
,
Downs
,
J. C.
,
Bellezza
,
A. J.
,
Suh
,
J.-K. F.
, and
Hart
,
R. T.
,
2005
, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retin. Eye Res.
,
24
(
1
), pp.
39
73
.10.1016/j.preteyeres.2004.06.001
7.
Campbell
,
I. C.
,
Coudrillier
,
B.
, and
Ethier
,
C. R.
,
2014
, “
Biomechanics of the Posterior Eye: A Critical Role in Health and Disease
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
21005
.10.1115/1.4026286
8.
Downs
,
J. C.
,
2015
, “
Optic Nerve Head Biomechanics in Aging and Disease
,”
Exp. Eye Res.
,
133
, pp.
19
29
.10.1016/j.exer.2015.02.011
9.
Yang
,
H.
,
Downs
,
J. C.
,
Sigal
,
I. A.
,
Roberts
,
M. D.
,
Thompson
,
H.
, and
Burgoyne
,
C. F.
,
2009
, “
Deformation of the Normal Monkey Optic Nerve Head Connective Tissue After Acute IOP Elevation Within 3-D Histomorphometric Reconstructions
,”
Invest. Ophthalmol. Vis. Sci.
,
50
(
12
), pp.
5785
5799
.10.1167/iovs.09-3410
10.
Albon
,
J.
,
Purslow
,
P. P.
,
Karwatowski
,
W. S. S.
, and
Easty
,
D. L.
,
2000
, “
Age Related Compliance of the Lamina Cribrosa in Human Eyes
,”
Br. J. Ophthalmol.
,
84
(
3
), pp.
318
323
.10.1136/bjo.84.3.318
11.
Fazio
,
M. A.
,
Clark
,
M. E.
,
Bruno
,
L.
, and
Girkin
,
C. A.
,
2018
, “
In Vivo Optic Nerve Head Mechanical Response to Intraocular and Cerebrospinal Fluid Pressure: Imaging Protocol and Quantification Method
,”
Sci. Rep.
,
8
(
1
), p.
12639
.10.1038/s41598-018-31052-x
12.
Girard
,
M. J. A.
,
Beotra
,
M. R.
,
Chin
,
K. S.
,
Sandhu
,
A.
,
Clemo
,
M.
,
Nikita
,
E.
,
Kamal
,
D. S.
,
Papadopoulos
,
M.
,
Mari
,
J. M.
,
Aung
,
T.
, and
Strouthidis
,
N. G.
,
2016
, “
In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
,”
Ophthalmology
,
123
(
6
), pp.
1190
1200
.10.1016/j.ophtha.2016.02.008
13.
Wang
,
B.
,
Tran
,
H.
,
Smith
,
M. A.
,
Kostanyan
,
T.
,
Schmitt
,
S. E.
,
Bilonick
,
R. A.
,
Jan
,
N.-J.
,
Kagemann
,
L.
,
Tyler-Kabara
,
E. C.
,
Ishikawa
,
H.
,
Schuman
,
J. S.
,
Sigal
,
I. A.
, and
Wollstein
,
G.
,
2017
, “
In-Vivo Effects of Intraocular and Intracranial Pressures on the Lamina Cribrosa Microstructure
,”
PLoS One
,
12
(
11
), p.
e0188302
.10.1371/journal.pone.0188302
14.
Wei
,
J.
,
Yang
,
B.
,
Voorhees
,
A. P.
,
Tran
,
H.
,
Brazile
,
B.
,
Wang
,
B.
,
Schuman
,
J.
,
Smith
,
M. A.
,
Wollstein
,
G.
, and
Sigal
,
I. A.
,
2018
, “
Measuring In-Vivo and In-Situ Ex-Vivo the 3D Deformation of the Lamina Cribrosa Microstructure Under Elevated Intraocular Pressure
,”
Proc. SPIE
, 10496, p. 1049611.10.1117/12.2291243
15.
Coudrillier
,
B.
,
Geraldes
,
D. M.
,
Vo
,
N. T.
,
Atwood
,
R.
,
Reinhard
,
C.
,
Campbell
,
I. C.
,
Raji
,
Y.
,
Albon
,
J.
,
Abel
,
R. L.
, and
Ethier
,
C. R.
,
2016
, “
Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular Pressure-Induced Deformation of the Porcine Lamina Cribrosa
,”
IEEE Trans. Med. Imaging
,
35
(
4
), pp.
988
999
.10.1109/TMI.2015.2504440
16.
Midgett
,
D. E.
,
Pease
,
M. E.
,
Jefferys
,
J. L.
,
Patel
,
M.
,
Franck
,
C.
,
Quigley
,
H. A.
, and
Nguyen
,
T. D.
,
2017
, “
The Pressure-Induced Deformation Response of the Human Lamina Cribrosa: Analysis of Regional Variations
,”
Acta Biomater.
,
53
, pp.
123
139
.10.1016/j.actbio.2016.12.054
17.
Sigal
,
I. A.
,
Grimm
,
J. L.
,
Jan
,
N.-J.
,
Reid
,
K.
,
Minckler
,
D. S.
, and
Brown
,
D. J.
,
2014
, “
Eye-Specific IOP-Induced Displacements and Deformations of Human Lamina Cribrosa
,”
Invest. Ophthalmol. Vis. Sci.
,
55
(
1
), pp.
1
15
.10.1167/iovs.13-12724
18.
Fazio
,
M. A.
,
Grytz
,
R.
,
Bruno
,
L.
,
Girard
,
M. J. A.
,
Gardiner
,
S.
,
Girkin
,
C. A.
, and
Downs
,
J. C.
,
2012
, “
Regional Variations in Mechanical Strain in the Posterior Human Sclera
,”
Invest. Ophthalmol. Vis. Sci.
,
53
(
9
), pp.
5326
5333
.10.1167/iovs.12-9668
19.
Grytz
,
R.
,
Fazio
,
M. A.
,
Girard
,
M. J. A.
,
Libertiaux
,
V.
,
Bruno
,
L.
,
Gardiner
,
S.
,
Girkin
,
C. A.
, and
Downs
,
J. C.
,
2014
, “
Material Properties of the Posterior Human Sclera
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
602
617
.10.1016/j.jmbbm.2013.03.027
20.
Clayson
,
K.
,
Pavlatos
,
E.
,
Ma
,
Y.
, and
Liu
,
J.
,
2017
, “
3D Characterization of Corneal Deformation Using Ultrasound Speckle Tracking
,”
J. Innov. Opt. Health Sci.
,
10
(
06
), p.
1742005
.10.1142/S1793545817420056
21.
Pavlatos
,
E.
,
Chen
,
H.
,
Clayson
,
K.
,
Pan
,
X.
, and
Liu
,
J.
,
2018
, “
Imaging Corneal Biomechanical Responses to Ocular Pulse Using High-Frequency Ultrasound
,”
IEEE Trans. Med. Imaging
,
37
(
2
), pp.
663
670
.10.1109/TMI.2017.2775146
22.
Perez
,
B. C.
,
Pavlatos
,
E.
,
Morris
,
H. J.
,
Chen
,
H.
,
Pan
,
X.
,
Hart
,
R. T.
, and
Liu
,
J.
,
2016
, “
Mapping 3D Strains With Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2302
2312
.10.1007/s10439-015-1506-1
23.
Pavlatos
,
E.
,
Perez
,
B. C.
,
Morris
,
H. J.
,
Chen
,
H.
,
Palko
,
J. R.
,
Pan
,
X.
,
Weber
,
P. A.
,
Hart
,
R. T.
, and
Liu
,
J.
,
2016
, “
Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
21015
.10.1115/1.4032124
24.
Pavlatos
,
E.
,
Ma
,
Y.
,
Clayson
,
K.
,
Pan
,
X.
, and
Liu
,
J.
,
2018
, “
Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
,”
Invest. Ophthalmol. Vis. Sci.
,
59
(
8
), pp.
3779
3788
.10.1167/iovs.18-24462
25.
Ma
,
Y.
,
Pavlatos
,
E.
,
Clayson
,
K.
,
Pan
,
X.
,
Kwok
,
S.
,
Sandwisch
,
T.
, and
Liu
,
J.
,
2019
, “
Mechanical Deformation of Human Optic Nerve Head and Peripapillary Tissue in Response to Acute IOP Elevation
,”
Invest. Ophthalmol. Vis. Sci.
,
60
(
4
), pp.
913
920
.10.1167/iovs.18-26071
26.
Tang
,
J.
, and
Liu
,
J.
,
2012
, “
Ultrasonic Measurement of Scleral Cross-Sectional Strains During Elevations of Intraocular Pressure: Method Validation and Initial Results in Posterior Porcine Sclera
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
91007
.10.1115/1.4007365
27.
Kallel
,
F.
, and
Ophir
,
J.
,
1997
, “
A Least-Squares Strain Estimator for Elastography
,”
Ultrason. Imaging
,
19
(
3
), pp.
195
208
.10.1177/016173469701900303
28.
Flage
,
T.
,
2009
, “
Permeability Properties of the Tissues in the Optic Nerve Head Region in the Rabbit and the Monkey: An Ultrastructural Study
,”
Acta Ophthalmol.
,
55
(
4
), pp.
652
664
.10.1111/j.1755-3768.1977.tb05663.x
29.
Ayyalasomayajula
,
A.
,
Park
,
R. I.
,
Simon
,
B. R.
, and
Vande Geest
,
J. P.
,
2016
, “
A Porohyperelastic Finite Element Model of the Eye: The Influence of Stiffness and Permeability on Intraocular Pressure and Optic Nerve Head Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
6
), pp.
591
602
.10.1080/10255842.2015.1052417
30.
Fatehee
,
N.
,
Yu
,
P. K.
,
Morgan
,
W. H.
,
Cringle
,
S. J.
, and
Yu
,
D.-Y.
,
2011
, “
Correlating Morphometric Parameters of the Porcine Optic Nerve Head in Spectral Domain Optical Coherence Tomography With Histological Sections
,”
Br. J. Ophthalmol.
,
95
(
4
), pp.
585
589
.10.1136/bjo.2010.188441
31.
Chien
,
J. L.
,
Ghassibi
,
M. P.
,
Mahadeshwar
,
P.
,
Li
,
P.
,
Liebmann
,
J. M.
,
Ritch
,
R.
,
Milman
,
T.
, and
Park
,
S. C.
,
2017
, “
A Novel Method for Assessing Lamina Cribrosa Structure Ex Vivo Using Anterior Segment Enhanced Depth Imaging Optical Coherence Tomography
,”
J. Glaucoma
,
26
(
7
), pp.
626
632
.10.1097/IJG.0000000000000685
32.
Girkin
,
C. A.
,
Fazio
,
M. A.
,
Yang
,
H.
,
Reynaud
,
J.
,
Burgoyne
,
C. F.
,
Smith
,
B.
,
Wang
,
L.
, and
Downs
,
J. C.
,
2017
, “
Variation in the Three-Dimensional Histomorphometry of the Normal Human Optic Nerve Head With Age and Race: Lamina Cribrosa and Peripapillary Scleral Thickness and Position
,”
Invest. Ophthalmol. Vis. Sci.
,
58
(
9
), pp.
3759
3769
.10.1167/iovs.17-21842
33.
Chidlow
,
G.
,
Ebneter
,
A.
,
Wood
,
J. P. M.
, and
Casson
,
R. J.
,
2011
, “
The Optic Nerve Head is the Site of Axonal Transport Disruption, Axonal Cytoskeleton Damage and Putative Axonal Regeneration Failure in a Rat Model of Glaucoma
,”
Acta Neuropathol.
,
121
(
6
), pp.
737
751
.10.1007/s00401-011-0807-1
34.
Quigley
,
H. A.
,
McKinnon
,
S. J.
,
Zack
,
D. J.
,
Pease
,
M. E.
,
Kerrigan–Baumrind
,
L. A.
,
Kerrigan
,
D. F.
, and
Mitchell
,
R. S.
,
2000
, “
Retrograde Axonal Transport of BDNF in Retinal Ganglion Cells is Blocked by Acute IOP Elevation in Rats
,”
Invest. Ophthalmol. Vis. Sci.
,
41
(
11
), pp.
3460
3466
.
35.
Tehrani
,
S.
,
Davis
,
L.
,
Cepurna
,
W. O.
,
Choe
,
T. E.
,
Lozano
,
D. C.
,
Monfared
,
A.
,
Cooper
,
L.
,
Cheng
,
J.
,
Johnson
,
E. C.
, and
Morrison
,
J. C.
,
2016
, “
Astrocyte Structural and Molecular Response to Elevated Intraocular Pressure Occurs Rapidly and Precedes Axonal Tubulin Rearrangement Within the Optic Nerve Head in a Rat Model
,”
PLoS One
,
11
(
11
), p.
e0167364
.10.1371/journal.pone.0167364
36.
Wang
,
R.
,
Seifert
,
P.
, and
Jakobs
,
T. C.
,
2017
, “
Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype
,”
Invest. Ophthalmol. Vis. Sci.
,
58
(
2
), pp.
924
932
.10.1167/iovs.16-20571
37.
Yarmohammadi
,
A.
,
Zangwill
,
L. M.
,
Diniz-Filho
,
A.
,
Suh
,
M. H.
,
Manalastas
,
P. I.
,
Fatehee
,
N.
,
Yousefi
,
S.
,
Belghith
,
A.
,
Saunders
,
L. J.
,
Medeiros
,
F. A.
,
Huang
,
D.
, and
Weinreb
,
R. N.
,
2016
, “
Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes
,”
Invest. Ophthalmol. Vis. Sci.
,
57
(
9
), pp.
OCT451
OCT459
.10.1167/iovs.15-18944
38.
See
,
J. L. S.
,
Nicolela
,
M. T.
, and
Chauhan
,
B. C.
,
2009
, “
Rates of Neuroretinal Rim and Peripapillary Atrophy Area Change: A Comparative Study of Glaucoma Patients and Normal Controls
,”
Ophthalmology
,
116
(
5
), pp.
840
847
.10.1016/j.ophtha.2008.12.005
39.
Hammel
,
N.
,
Belghith
,
A.
,
Bowd
,
C.
,
Medeiros
,
F. A.
,
Sharpsten
,
L.
,
Mendoza
,
N.
,
Tatham
,
A. J.
,
Khachatryan
,
N.
,
Liebmann
,
J. M.
,
Girkin
,
C. A.
,
Weinreb
,
R. N.
, and
Zangwill
,
L. M.
,
2016
, “
Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
,”
Ophthalmology
,
123
(
4
), pp.
760
770
.10.1016/j.ophtha.2015.11.018
40.
Grytz
,
R.
,
Meschke
,
G.
, and
Jonas
,
J. B.
,
2011
, “
The Collagen Fibril Architecture in the Lamina Cribrosa and Peripapillary Sclera Predicted by a Computational Remodeling Approach
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
371
382
.10.1007/s10237-010-0240-8
41.
Pijanka
,
J. K.
,
Coudrillier
,
B.
,
Ziegler
,
K.
,
Sorensen
,
T.
,
Meek
,
K. M.
,
Nguyen
,
T. D.
,
Quigley
,
H. A.
, and
Boote
,
C.
,
2012
, “
Quantitative Mapping of Collagen Fiber Orientation in Non-Glaucoma and Glaucoma Posterior Human Sclerae
,”
Invest. Ophthalmol. Vis. Sci.
,
53
(
9
), pp.
5258
5270
.10.1167/iovs.12-9705
42.
Jensen
,
J. A.
, and
Svendsen
,
N. B.
,
1992
, “
Calculation of Pressure Fields From Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
2
), pp.
262
267
.10.1109/58.139123
43.
Jensen
,
J. A.
,
1996
, “
Field: A Program for Simulating Ultrasound Systems
,”
Tenth Nordic Baltic Conference Biomedical Imaging
, Tampere, Finland, Vol.
4
, pp.
351
353
.
44.
Hua
,
Y.
,
Voorhees
,
A. P.
, and
Sigal
,
I. A.
,
2018
, “
Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Vis. Sci.
,
59
(
1
), pp.
154
165
.10.1167/iovs.17-22488
45.
Feola
,
A. J.
,
Coudrillier
,
B.
,
Mulvihill
,
J.
,
Geraldes
,
D. M.
,
Vo
,
N. T.
,
Albon
,
J.
,
Abel
,
R. L.
,
Samuels
,
B. C.
, and
Ethier
,
C. R.
,
2017
, “
Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
,”
Invest. Ophthalmol. Vis. Sci.
,
58
(
4
), pp.
2070
2078
.10.1167/iovs.16-21393
46.
Feola
,
A. J.
,
Myers
,
J. G.
,
Raykin
,
J.
,
Mulugeta
,
L.
,
Nelson
,
E. S.
,
Samuels
,
B. C.
, and
Ethier
,
C. R.
,
2016
, “
Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure
,”
Invest. Ophthalmol. Vis. Sci.
,
57
(
4
), pp.
1901
1911
.10.1167/iovs.15-17573
You do not currently have access to this content.