Abstract

There is much debate in the literature surrounding the effects of heart rate on aortic regurgitation (AR). Despite the contradictory information, it is still widely believed that an increase in heart rate is beneficial due to the disproportionate shortening of the duration of diastole relative to systole, permitting less time for the left ventricle to fill from regurgitation. This in vitro work investigates how a change in heart rate affects the left ventricular fluid dynamics in the absence and presence of acute AR. The experiments are performed on a novel double-activation left heart simulator previously used for the study of chronic AR. The intraventricular velocity fields are acquired via time-resolved planar particle image velocimetry (PIV) in a clinically relevant plane. Considering fluid dynamic factors, an increase in heart rate was observed to have a limited benefit in the case of mild AR and a detrimental effect for more severe AR. With increasing heart rate, mild AR was associated with a decrease in regurgitant volume, a negligible change in regurgitant volume per diastolic second, and a limited reduction in the fraction of retained regurgitant inflow. More severe AR was accompanied by an increase in both regurgitant volume and the fraction of retained regurgitant inflow, implying a less effective pumping efficiency and a longer relative residence time of blood in the ventricle. Globally, the left ventricle's capacity to compensate for the increase in energy dissipation associated with an increase in heart rate diminishes considerably with severity, a phenomenon which may be exploited further as a method of noninvasive assessment of the severity of AR. These findings may affect the clinical belief that tachycardia is preferred in acute AR and should be investigated further in the clinical setting.

References

References
1.
Iung
,
B.
, and
Vahanian
,
A.
,
2011
, “
Epidemiology of Valvular Heart Disease in the Adult
,”
Nat. Rev. Cardiol.
,
8
(
3
), pp.
162
172
.10.1038/nrcardio.2010.202
2.
d'Arcy
,
J. L.
,
Prendergast
,
B. D.
,
Chambers
,
J. B.
,
Ray
,
S. G.
, and
Bridgewater
,
B.
,
2011
, “
Valvular Heart Disease: The Next Cardiac Epidemic
,”
Heart
,
97
(
2
), pp.
91
93
.10.1136/hrt.2010.205096
3.
Iung
,
B.
,
Baron
,
G.
,
Butchart
,
E. G.
,
Delahaye
,
F.
,
Gohlke-Bärwolf
,
C.
,
Levang
,
O. W.
,
Tornos
,
P.
,
Vanoverschelde
,
J. L.
,
Vermeer
,
F.
,
Boersma
,
E.
,
Ravaud
,
P.
, and
Vahanian
,
A.
,
2003
, “
A Prospective Survey of Patients With Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease
,”
Eur. Heart J.
,
24
(
13
), pp.
1231
1243
.10.1016/S0195-668X(03)00201-X
4.
Singh
,
J. P.
,
Evans
,
J. C.
,
Levy
,
D.
,
Larson
,
M. G.
,
Freed
,
L. A.
,
Fuller
,
D. L.
,
Lehman
,
B.
, and
Benjamin
,
E. J.
,
1999
, “
Prevalence and Clinical Determinants of Mitral, Tricuspid, and Aortic Regurgitation (the Framingham Heart Study)
,”
Am. J. Cardiol.
,
83
(
6
), pp.
897
902
.10.1016/S0002-9149(98)01064-9
5.
Hodgkin
,
T.
,
1829
, “
On Retroversion of the Valves of the Aorta
,”
London Med. Gaz.
,
3
, pp.
433
443
.
6.
Corrigan
,
D. J.
,
1832
, “
On Permanent Patency of the Mouth of the Aorta, or Inadequacy of the Aortic Valves
,”
Edinburgh. Med. Surg. J.
,
37
(
111
), pp.
225
245
.
8.
Garrod
,
A. H.
,
1870
, “
On the Relative Duration of the Component Parts of the Radial Sphygmograph Trace in Health
,”
Proc. R. Soc. London
,
18
(
114–122
), pp.
351
354
.10.1098/rspl.1869.0079
9.
Garrod
,
A. H.
,
1875
, “
On Some Points Connected With the Circulation of Blood, Arrived at From a Study of the Sphygmograph-Trace
,”
Proc. R. Soc. London
,
23
(
156–163
), pp.
140
151
.10.1098/rspl.1873.0046
10.
Lewy
,
B.
,
1896
, “
Die Arbeit Des Gesunden Und Des Kranken Herzens
,”
Z. Klin. Med.
,
31
, pp.
321
366
.
11.
Allan
,
G. A.
,
1925
, “
A Schema of the Circulation With Experiments to Determine the Additional Load on the Apparatus Produced by Conditions Representing Valvular Lesions
,”
Heart
,
12
, pp.
181
201
.
12.
Stewart
,
H. A.
,
1908
, “
Experimental and Clinical Investigation of the Pulse and Blood Pressure Changes in Aortic Insufficiency
,”
Arch. Intern. Med.
,
1
(
1
), pp.
102
147
.10.1001/archinte.1908.00050010109005
13.
Wiggers
,
C. J.
, and
Maltby
,
A. B.
,
1931
, “
Further Observations on Experimental Aortic Insufficiency IV: Hemodynamic Factors Determining the Characteristic Changes in Aortic and Ventricular Pressure Pulses
,”
Am. J. Physiol.
,
97
(
4
), pp.
689
705
.10.1152/ajplegacy.1931.97.4.689
14.
Bazett
,
H. C.
,
Sands
,
J.
, and
Beffel
,
J. M.
,
1926
, “
An Experimental Study of Chronic Aortic Regurgitation in Dogs
,”
J. Clin. Invest.
,
3
(
1
), pp.
65
108
.10.1172/JCI100074
15.
Wiggers
,
C. J.
,
1929
, “
Die Pathologische Physiologie Des Kreislaufs Bei Klappenerkrankungen Des Herzens
,”
Erg. Physiol.
,
29
(
1
), pp.
250
369
.10.1007/BF02322369
16.
Wiggers
,
C. J.
,
1931
, “
The Magnitude of Regurgitation With Aortic Leaks of Different Sizes: A Review of Experimental Work
,”
J. Amer. Med. Assoc.
,
97
(
19
),pp.
1359
1364
.10.1001/jama.1931.02730190015004
17.
Wiggers
,
C. J.
,
1960
, “
Modern Concepts of Hemodynamic Effects of Aortic Insufficiency
,”
W. Va Med. J.
,
56
, pp.
327
334
.
18.
Nakano
,
J.
,
1962
, “
Cardiovascular Dynamics of Aortic Insufficiency
,”
Jpn. Circ. J.
,
26
(
8
), pp.
686
699
.10.1253/jcj.26.686
19.
Gorlin
,
R.
,
McMillan
,
I. K. R.
,
Medd
,
W. E.
,
Matthews
,
M. B.
, and
Daley
,
R.
,
1955
, “
Dynamics of the Circulation in Aortic Valvular Disease
,”
Am. J. Med.
,
18
(
6
), pp.
855
870
.10.1016/0002-9343(55)90169-8
20.
Warner
,
H. R.
, and
Toronto
,
A. F.
,
1960
, “
The Effect of Heart Rate on Aortic Insufficiency
,”
Fed. Proc.
,
19
(
1
), p.
120
.
21.
Warner
,
H. R.
, and
Toronto
,
A. F.
,
1961
, “
Effect of Heart Rate on Aortic Insufficiency as Measured by a Dye-Dilution Technique
,”
Circ. Res.
,
9
(
2
), pp.
413
417
.10.1161/01.RES.9.2.413
22.
Warner
,
H. R.
, and
Toronto
,
A. F.
,
1958
, “
Quantification of Back Flow in Patients With Aortic Insufficiency Using an Indicator Technic
,”
Circ. Res.
,
6
(
1
), pp.
29
34
.10.1161/01.RES.6.1.29
23.
Rothlin
,
M.
,
Rutishauser
,
W.
, and
Wirz
,
P.
,
1968
, “
Einflußder Pulsfrequenz Auf Die Hämodynamik Bei Aortenklappeninsuffizienz
,”
Z. Kreislaufforsch.
,
57
(
6
), pp.
497
507
.
24.
Armelin
,
E.
,
Michaels
,
L.
,
Marshall
,
H. W.
,
Donald
,
D. E.
,
Cheesman
,
R. J.
, and
Wood
,
E. H.
,
1963
, “
Detection and Measurement of Experimentally Produced Aortic Regurgitation by Means of Indicator-Dilution Curves Recorded From the Left Ventricle
,”
Circ. Res.
,
12
(
3
), pp.
269
290
.10.1161/01.RES.12.3.269
25.
Malooly
,
D. A.
,
Donald
,
D. E.
,
Marshall
,
H. W.
, and
Wood
,
E. H.
,
1961
, “
Combined Flowmeter-Dye Dilution Study of the Acute Effects of Changes in Heart Rate by Vagal Stimulation on the Degree of Experimental Aortic Regurgitation
,”
Physiologist
,
4
, p.
70
.
26.
Malooly
,
D. A.
,
Donald
,
D. E.
,
Marshall
,
H. W.
, and
Wood
,
E. H.
,
1963
, “
Assessment of an Indicator-Dilution Technic for Quantitating Aortic Regurgitation by Electromagnetic Flowmeter
,”
Circ. Res.
,
12
(
5
), pp.
487
507
.10.1161/01.RES.12.5.487
27.
Weldon
,
C. S.
, and
Cooper
,
T.
,
1958
, “
Aortic Flow Characteristics in Experimental Aortic Insufficiency
,”
Surg. Forum
,
9
, pp.
325
329
.
28.
Brawley
,
R. K.
,
Morrow
,
A. G.
,
Seipp
,
H. W.
, and
Cobb
,
D. E.
,
1967
, “
Direct Determinations of Aortic Blood Flow in Patients With Aortic Regurgitation: Effects of Alterations in Heart Rate, Increased Ventricular Preload or Afterload, and Isoproterenol
,”
Circulation
,
35
(
1
), pp.
32
45
.10.1161/01.CIR.35.1.32
29.
Levinson
,
G. E.
,
Frank
,
M. J.
, and
Schwartz
,
C. J.
,
1970
, “
The Effect of Rest and Physical Effort on the Left Ventricular Burden in Mitral and Aortic Regurgitation
,”
Am. Heart J.
,
80
(
6
), pp.
791
801
.10.1016/0002-8703(70)90141-9
30.
Judge
,
T. P.
,
Kennedy
,
J. W.
,
Bennett
,
L. J.
,
Wills
,
R. E.
,
Murray
,
J. A.
, and
Blackmon
,
J. R.
,
1971
, “
Quantitative Hemodynamic Effects of Heart Rate in Aortic Regurgitation
,”
Circulation
,
44
(
3
), pp.
355
367
.10.1161/01.CIR.44.3.355
31.
Sandler
,
H.
,
Dodge
,
H. T.
,
Hay
,
R. E.
, and
Rackley
,
C. E.
,
1963
, “
Quantitation of Valvular Insufficiency in Man by Angiocardiography
,”
Am. Heart J.
,
65
(
4
), pp.
501
513
.10.1016/0002-8703(63)90100-5
32.
Firth
,
B. G.
,
Dehmer
,
G. J.
,
Nicod
,
P.
,
Willerson
,
J. T.
, and
Hillis
,
L. D.
,
1982
, “
Effect of Increasing Heart Rate in Patients With Aortic Regurgitation: Effect of Incremental Atrial Pacing on Scintigraphic, Hemodynamic and Thermodilution Measurements
,”
Am. J. Cardiol.
,
49
(
8
), pp.
1860
1867
.10.1016/0002-9149(82)90203-X
33.
Alegret
,
J. M.
,
Beltran-Debon
,
R.
,
Franco
,
L.
,
Rubio
,
F.
,
Ligero
,
C.
,
Palazon
,
O.
,
Vernis
,
J. M.
,
Mendoza
,
M.
, and
Martin
,
M.
,
2013
, “
Effect of Isometric Exercise on Aortic Regurgitation Assessed by Cardiovascular Magnetic Resonance
,”
Eur. Heart J.
,
34
(
Suppl 1
), p.
1908
.10.1093/eurheartj/eht308.1908
34.
Stern
,
H.
,
Calavrezos
,
L.
,
Meierhofer
,
C.
,
Steinlechner
,
E.
,
Müller
,
J.
,
Hager
,
A.
,
Martinoff
,
S.
,
Ewert
,
P.
, and
Fratz
,
S.
,
2014
, “
Physical Exercise Reduces Aortic Regurgitation: Exercise Magnetic Resonance Imaging
,”
J. Am. Coll. Cardiol. Cardiovasc. Imag.
,
7
(
3
), pp.
314
315
.10.1016/j.jcmg.2013.10.013
35.
Lidén
,
M.
,
Wodecki
,
M.
,
Thunberg
,
P.
, and
Rask
,
P.
,
2017
, “
Impact of Heart Rate on Flow Measurements in Aortic Regurgitation
,”
J. Heart Valve Dis.
,
26
(
5
), pp.
502
508
.
36.
Narula
,
J.
,
Vannan
,
M. A.
, and
DeMaria
,
A. N.
,
2007
, “
Of That Waltz in my Heart
,”
J. Am. Coll. Cardiol.
,
49
(
8
), pp.
917
920
.10.1016/j.jacc.2006.12.006
37.
Stugaard
,
M.
,
Koriyama
,
H.
,
Katsuki
,
K.
,
Masuda
,
K.
,
Asanuma
,
T.
,
Takeda
,
Y.
,
Sakata
,
Y.
,
Itatani
,
K.
, and
Nakatani
,
S.
,
2015
, “
Energy Loss in the Left Ventricle Obtained by Vector Flow Mapping as a New Quantitative Measure of Severity of Aortic Regurgitation: A Combined Experimental and Clinical Study
,”
Eur. Heart J. Cardiovasc. Imag.
,
16
(
7
), pp.
723
730
.10.1093/ehjci/jev035
38.
Okafor
,
I. U.
,
Raghav
,
V.
,
Condado
,
J. F.
,
Midha
,
P. A.
,
Kumar
,
G.
, and
Yoganathan
,
A. P.
,
2017
, “
Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
45
(
5
), pp.
1305
1314
.10.1007/s10439-017-1790-z
39.
Di Labbio
,
G.
, and
Kadem
,
L.
,
2018
, “
Jet Collisions and Vortex Reversal in the Human Left Ventricle
,”
J. Biomech.
,
78
, pp.
155
160
.10.1016/j.jbiomech.2018.07.023
40.
Di Labbio
,
G.
,
Vétel
,
J.
, and
Kadem
,
L.
,
2018
, “
Material Transport in the Left Ventricle With Aortic Valve Regurgitation
,”
Phys. Rev. Fluids
,
3
(
11
), p.
113101
.10.1103/PhysRevFluids.3.113101
41.
Roberts
,
W. C.
,
Ko
,
J. M.
,
Moore
,
T. R.
, and
Jones
,
W. H.
,
2006
, “
Causes of Pure Aortic Regurgitation in Patients Having Isolated Aortic Valve Replacement at a Single U.S. Tertiary Hospital (1993 to 2005)
,”
Circulation
,
114
(
5
), pp.
422
429
.10.1161/CIRCULATIONAHA.106.622761
42.
Dall'Ara
,
G.
,
Saia
,
F.
,
Moretti
,
C.
,
Marrozzini
,
C.
,
Taglieri
,
N.
,
Bordoni
,
B.
,
Chiarabelli
,
M.
,
Ciuca
,
C.
,
Rapezzi
,
C.
, and
Marzocchi
,
A.
,
2017
, “
Incidence, Treatment, and Outcome of Acute Aortic Valve Regurgitation Complicating Percutaneous Balloon Aortic Valvuloplasty
,”
Catheter. Cardiovasc. Intervention
,
89
(
4
), pp.
e145
e152
.10.1002/ccd.26378
43.
Di Labbio
,
G.
, and
Kadem
,
L.
,
2019
, “
Reduced-Order Modeling of Left Ventricular Flow Subject to Aortic Valve Regurgitation
,”
Phys. Fluids
,
31
(
3
), p.
031901
.10.1063/1.5083054
44.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
, III
,
J. P.
,
Guyton
,
R. A.
,
O'Gara
,
P. T.
,
Ruiz
,
C. E.
,
Skubas
,
N. J.
,
Sorajja
,
P.
,
Sundt
, III
,
T. M.
, and
Thomas
,
J. D.
,
2014
, “
2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
e57
e185
.10.1016/j.jacc.2014.02.536
45.
Chung
,
C. S.
,
Karamanoglu
,
M.
, and
Kovács
,
S. J.
,
2004
, “
Duration of Diastole and Its Phases as a Function of Heart Rate During Supine Bicycle Exercise
,”
Am. J. Physiol. Heart C.
,
287
(
5
), pp.
H2003
H2008
.10.1152/ajpheart.00404.2004
46.
Lancellotti
,
P.
,
Tribouilloy
,
C.
,
Hagendorff
,
A.
,
Popescu
,
B. A.
,
Edvardsen
,
T.
,
Pierard
,
L. A.
,
Badano
,
L. P.
, and
Zamorano
,
J. L.
,
2013
, “
Recommendations for the Echocardiographic Assessment of Native Valvular Regurgitation: An Executive Summary From the European Association of Cardiovascular Imaging
,”
Eur. Heart J. Cardiovasc. Imaging
,
14
(
7
), pp.
611
644
.10.1093/ehjci/jet105
47.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
48.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
49.
Raffel
,
M.
,
Willert
,
C.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
50.
Etebari
,
A.
, and
Vlachos
,
P. P.
,
2005
, “
Improvements on the Accuracy of Derivative Estimation From DPIV Velocity Measurements
,”
Exp. Fluids
,
39
(
6
), pp.
1040
1050
.10.1007/s00348-005-0037-1
51.
Raben
,
J. S.
,
Hariharan
,
P.
,
Robinson
,
R.
,
Malinauskas
,
R.
, and
Vlachos
,
P. P.
,
2016
, “
Time-Resolved Particle Image Velocimetry Measurements With Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model
,”
Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
7
22
.10.1007/s13239-015-0251-9
52.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2015
, “
Left Ventricular Fluid Mechanics: The Long Way From Theoretical Models to Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
26
40
.10.1007/s10439-014-1101-x
53.
Stewart
,
K. C.
,
Charonko
,
J. C.
,
Niebel
,
C. L.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2012
, “
Left Ventricular Vortex Formation Is Unaffected by Diastolic Impairment
,”
Am. J. Physiol. Heart C
,
303
(
10
), pp.
H1255
H1262
.10.1152/ajpheart.00093.2012
54.
Charonko
,
J. J.
,
Kumar
,
R.
,
Stewart
,
K.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2013
, “
Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
1049
1061
.10.1007/s10439-013-0755-0
55.
Michard
,
M.
,
Graftieaux
,
L.
,
Lollini
,
L.
, and
Grosjean
,
N.
,
1997
, “
Identification of Vortical Structures by a Non-Local Criterion: Application to PIV Measurements and DNS-LES Results of Turbulent Rotating Flows
,”
Eleventh Symposium on Turbulent Shear Flows—TSF11
, Institut National Polytechnique de Grenoble, Grenoble, France, pp.
25
30
.
56.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
57.
Vella
,
C. A.
, and
Robergs
,
R. A.
,
2005
, “
A Review of the Stroke Volume Response to Upright Exercise in Healthy Subjects
,”
Brit. J. Sport. Med.
,
39
(
4
), pp.
190
195
.10.1136/bjsm.2004.013037
58.
Vieira
,
S. S.
,
Lemes
,
B.
,
de Carvalho
,
P. T. C.
,
de Lima
,
R. N.
,
Bocalini
,
D. S.
,
Junior
,
J. A. S.
,
Arsa
,
G.
,
Casarin
,
C. A.
,
Andrade
,
E. L.
, and
Serra
,
A. J.
,
2016
, “
Does Stroke Volume Increase During an Incremental Exercise? a Systematic Review
,”
Open Cardiovasc. Med. J.
,
10
(
1
), pp.
57
63
.10.2174/1874192401610010057
59.
Kudela
,
H.
, and
Malecha
,
Z. M.
,
2009
, “
Eruption of a Boundary Layer Induced by a 2D Vortex Patch
,”
Fluid Dyn. Res.
,
41
(
5
), p.
055502
.10.1088/0169-5983/41/5/055502
60.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2005
, “
Nature Optimizes the Swirling Flow in the Human Left Ventricle
,”
Phys. Rev. Lett.
,
95
(
10
), p.
108101
.10.1103/PhysRevLett.95.108101
61.
Itatani
,
K.
,
2014
, “
When the Blood Flow Becomes Bright
,”
Eur. Heart J.
,
35
(
12
), pp.
747
752a
.10.1093/eurheartj/ehu057
62.
Barker
,
A. J.
,
van Ooij
,
P.
,
Bandi
,
K.
,
Garcia
,
J.
,
Albaghdadi
,
M.
,
McCarthy
,
P.
,
Bonow
,
R. O.
,
Carr
,
J.
,
Collins
,
J.
,
Malaisrie
,
S. C.
, and
Markl
,
M.
,
2014
, “
Viscous Energy Loss in the Presence of Abnormal Aortic Flow
,”
Magn. Reson. Med.
,
72
(
3
), pp.
620
628
.10.1002/mrm.24962
63.
Binter
,
C.
,
Gülan
,
U.
,
Holzner
,
M.
, and
Kozerke
,
S.
,
2016
, “
On the Accuracy of Viscous and Turbulent Loss Quantification in Stenotic Aortic Flow Using Phase-Contrast MRI
,”
Magn. Reson. Med.
,
76
(
1
), pp.
191
196
.10.1002/mrm.25862
64.
Garcia
,
J.
,
Wu
,
C.
,
Gao
,
X.
,
Bristow
,
M.
,
Lydell
,
C.
,
Howarth
,
A.
,
Fedak
,
P.
, and
White
,
J.
,
2017
, “
Usefulness of Pressure Mapping and Viscous Energy Loss by 4D Flow MRI in Patients With Bicuspid Aortic Valve Disease
,”
Can. J. Cardiol.
,
33
(
10
), pp.
S180
S181
.10.1016/j.cjca.2017.07.352
65.
Batchelor
,
G. K.
,
2002
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
New York
.
66.
Agati
,
L.
,
Cimino
,
S.
,
Tonti
,
G.
,
Cicogna
,
F.
,
Petronilli
,
V.
,
De Luca
,
L.
,
Iacoboni
,
C.
, and
Pedrizzetti
,
G.
,
2014
, “
Quantitative Analysis of Intraventricular Blood Flow Dynamics by Echocardiographic Particle Image Velocimetry in Patients With Acute Myocardial Infarction at Different Stages of Left Ventricular Dysfunction
,”
Eur. Heart J. Cardiovasc. Imaging
,
15
(
11
), pp.
1203
1212
.10.1093/ehjci/jeu106
67.
Kim
,
I. C.
,
Hong
,
G. R.
,
Pedrizzetti
,
G.
,
Shim
,
C. Y.
,
Kang
,
S. M.
, and
Chung
,
N.
,
2018
, “
Usefulness of Left Ventricular Vortex Flow Analysis for Predicting Clinical Outcomes in Patients With Chronic Heart Failure: A Quantitative Vorticity Imaging Study Using Contrast Echocardiography
,”
Ultrasound Med. Biol.
,
44
(
9
), pp.
1951
1959
.10.1016/j.ultrasmedbio.2018.05.015
68.
Bolger
,
A. F.
,
Heiberg
,
E.
,
Karlsson
,
M.
,
Wigström
,
L.
,
Engvall
,
J.
,
Sigfridsson
,
A.
,
Ebbers
,
T.
,
Kvitting
,
J. P. E.
,
Carlhäll
,
C. J.
, and
Wranne
,
B.
,
2007
, “
Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. R.
,
9
(
5
), pp.
741
747
.10.1080/10976640701544530
69.
Meyers
,
B. A.
,
Goergen
,
C. J.
, and
Vlachos
,
P. P.
,
2018
, “
Development and Validation of a Phase-Filtered Moving Ensemble Correlation for Echocardiographic Particle Image Velocimetry
,”
Ultrasound Med. Biol.
,
44
(
2
), pp.
477
488
.10.1016/j.ultrasmedbio.2017.10.008
70.
Lemmon
,
J. D.
, and
Yoganathan
,
A. P.
,
2000
, “
Three-Dimensional Computational Model of Left Heart Diastolic Function With Fluid-Structure Interaction
,”
J. Biomech. Eng.
,
122
(
2
), pp.
109
117
.10.1115/1.429648
71.
Lemmon
,
J. D.
, and
Yoganathan
,
A. P.
,
2000
, “
Computational Modeling of Left Heart Diastolic Function: Examination of Ventricular Dysfunction
,”
J. Biomech. Eng.
,
122
(
4
), pp.
297
303
.10.1115/1.1286559
72.
McQueen
,
D. M.
, and
Peskin
,
C. S.
,
2000
, “
A Three-Dimensional Computer Model of the Human Heart for Studying Cardiac Fluid Dynamics
,”
Comput. Graph.
,
34
(
1
), pp.
56
60
.10.1145/563788.604453
73.
Vierendeels
,
J. A.
,
Riemslagh
,
K.
,
Dick
,
E.
, and
Verdonck
,
P. R.
,
2000
, “
Computer Simulation of Intraventricular Flow and Pressure Gradients During Diastole
,”
J. Biomech. Eng.
,
122
(
6
), pp.
667
674
.10.1115/1.1318941
74.
Baccani
,
B.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2002
, “
Vortex Dynamics in a Model Left Ventricle During Filling
,”
Eur. J. Mech. B Fluids
,
21
(
5
), pp.
527
543
.10.1016/S0997-7546(02)01200-1
75.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
(
1
), pp.
179
198
.10.1017/S0022112005005550
76.
Meschini
,
V.
,
de Tullio
,
M. D.
,
Querzoli
,
G.
, and
Verzicco
,
R.
,
2018
, “
Flow Structure in Healthy and Pathological Left Ventricles With Natural and Prosthetic Mitral Valves
,”
J. Fluid Mech.
,
834
, pp.
271
307
.10.1017/jfm.2017.725
77.
Celotto
,
C.
,
Zovatto
,
L.
,
Collia
,
D.
, and
Pedrizzetti
,
G.
,
2019
, “
Influence of Mitral Valve Elasticity on Flow Development in the Left Ventricle
,”
Eur. J. Mech. B Fluids
,
75
, pp.
110
118
.10.1016/j.euromechflu.2018.11.018
78.
Wu
,
M. C. H.
,
Zakerzadeh
,
R.
,
Kamensky
,
D.
,
Kiendl
,
J.
,
Sacks
,
M. S.
, and
Hsu
,
M.-C.
,
2018
, “
An Anisotropic Constitutive Model for Immersogeometric Fluid-Structure Interaction Analysis of Bioprosthetic Heart Valves
,”
J. Biomech.
,
74
, pp.
23
31
.10.1016/j.jbiomech.2018.04.012
79.
Vedula
,
V.
,
Seo
,
J.-H.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2016
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comp. Fluid Dyn.
,
30
(
1–2
), pp.
3
21
.10.1007/s00162-015-0349-6
80.
Sacco
,
F.
,
Paun
,
B.
,
Lehmkuhl
,
O.
,
Iles
,
T. L.
,
Iaizzo
,
P. A.
,
Houzeaux
,
G.
,
Vázquez
,
M.
,
Butakoff
,
C.
, and
Aguado-Sierra
,
J.
,
2018
, “
Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations
,”
Front. Physiol.
,
9
, p.
458
.10.3389/fphys.2018.00458
81.
Pierrakos
,
O.
,
Vlachos
,
P. P.
, and
Telionis
,
D. P.
,
2004
, “
Time-Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses
,”
J. Biomech. Eng.
,
126
(
6
),pp.
714
726
.10.1115/1.1824124
82.
Kheradvar
,
A.
,
Kasalko
,
J.
,
Johnson
,
D.
, and
Gharib
,
M.
,
2006
, “
An In Vitro Study of Changing Profile Heights in Mitral Bioprostheses and Their Influence on Flow
,”
ASAIO J.
,
52
(
1
),pp.
34
38
.10.1097/01.mat.0000191203.09932.8c
83.
Okafor
,
I. U.
,
Santhanakrishnan
,
A.
,
Chaffins
,
B. D.
,
Mirabella
,
L.
,
Oshinski
,
J. N.
, and
Yoganathan
,
A. P.
,
2015
, “
Cardiovascular Magnetic Resonance Compatible Physical Model of the Left Ventricle for Multi-Modality Characterization of Wall Motion and Hemodynamics
,”
J. Cardiovasc. Magn. R.
,
17
(
1
), p.
51
.10.1186/s12968-015-0154-9
84.
Di Labbio
,
G.
, and
Kadem
,
L.
,
2019
, “
Response to Letter to the Editor: ‘Left Ventricular Flow in the Presence of Aortic Regurgitation’
,”
J. Biomech.
,
87
, pp.
212
214
.10.1016/j.jbiomech.2019.03.003
85.
Sands
,
J.
,
1923
, “
Chronic Aortic Regurgitation in Dogs
,”
Q. J. Exp. Physiol.
,
13
(
Suppl
), pp.
215
216
.
86.
Bazett
,
H. C.
,
1925
, “
Further Observations on Experimental Aortic Regurgitation
,”
Am. J. Physiol.
,
72
(
1
), pp.
201
202
.
You do not currently have access to this content.