Abstract

Bicycle helmets attenuate head impacts using expanded polystyrene (EPS) foam liners. The EPS density plays a key role in determining the helmet and head response during an impact. Prior pilot work in our lab showed that EPS density varied by up to 18 kg/m3 within a single helmet, and thus the purpose of this study was to quantify the regional density variations within and between helmets and to establish how these variations influence helmet impact performance. We evaluated 10–12 samples of two traditional and two bicycle motocross (BMX) bicycle helmets with EPS liners. The bulk liner density and density of 16–19 cores extracted from specific locations on each sample were measured. Additional samples of two of these helmet models were then impacted at 3.0, 6.3, and 7.8 m/s to determine the relationship between local EPS density and helmet impact performance. We found that density varied significantly within each sample in all helmet models and also varied significantly between samples in three helmet models. The density variations were not symmetric across the midline in two of the four helmet models. The observed density variations influenced the helmets' impact performance. Our data suggest that variations in peak headform acceleration during impacts to the same location on different samples of the same helmet model can be partially explained by density differences between helmet samples. These density variations and resulting impact performance differences may play a role in a helmet's ability to mitigate head injury.

References

References
1.
Alves de Sousa
,
R.
,
Goncalves
,
D.
,
Coelho
,
R.
, and
Teixeira-Dias
,
F.
,
2012
, “
Assessing the Effectiveness of a Natural Cellular Material Used as Safety Padding Material in Motorcycle Helmets
,”
Simulation
,
88
(
5
), pp.
580
591
.10.1177/0037549711414735
2.
Asiminei
,
A. G.
,
Vanden Bosche
,
K.
,
Van der Perre
,
G.
,
Verpoest
,
I.
, and
Goffin
,
J.
,
2008
, “
An Approach to Model the Head-Bicycle Helmet Dynamic Behaviour Through Transient Finite Element Analysis
,”
15th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields
, Ulm,
Germany
, July 16–17, pp.
13
23
.
3.
Di Landro
,
L.
,
Sala
,
G.
, and
Olivieri
,
D.
,
2002
, “
Deformation Mechanisms and Energy Absorption of Polystyrene Foams of Protective Helmets
,”
Polym. Test.
,
21
(
2
), pp.
217
228
.10.1016/S0142-9418(01)00073-3
4.
Fernandes
,
F. A. O.
,
Alves de Sousa
,
R. J.
,
Willinger
,
R.
, and
Deck
,
C.
,
2013
, “
Finite Element Analysis of Helmeted Impacts and Head Injury Evaluation With a Commercial Road Helmet
,”
IRCOBI Conference
, Gothenburg, Sweden, Sept. 11–13, pp.
431
442
.https://www.researchgate.net/profile/Ricardo_Alves_de_Sousa/publication/259194508_Finite_element_analysis_of_helmeted_oblique_impacts_and_head_injury_evaluation_with_a_commercial_road_helmet/links/54b566d50cf26833efd17c57/Finite-element-analysis-of-helmeted-oblique-impacts-and-head-injury-evaluation-with-a-commercial-road-helmet.pdf
5.
Gale
,
A.
, and
Mills
,
N. J.
,
1985
, “
Effect of Polystyrene Foam Liner Density on Motorcycle Helmet Shock Absorption
,”
Plast. Rubber Process. Appl.
,
5
(
2
), pp.
101
108
.
6.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
1991
, “
The Effectiveness of Foams in Bicycle and Motorcycle Helmet
,”
Accid. Anal. Prev.
,
23
(
2–3
), pp.
153
163
.10.1016/0001-4575(91)90045-7
7.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
2006
, “
Bicycle Helmet Design
,”
Proc. Inst. Mech. Eng., Part L
,
220
(
4
), pp.
167
180
.10.1243/14644207JMDA100
8.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
2008
, “
Finite-Element Analysis of Bicycle Helmet Oblique Impacts
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1087
1101
.10.1016/j.ijimpeng.2007.05.006
9.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
2008
, “
Oblique Impact Testing of Bicycle Helmets
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1075
1086
.10.1016/j.ijimpeng.2007.05.005
10.
Kroeker
,
S. G.
,
Bonin
,
S. J.
,
DeMarco
,
A. L.
,
Good
,
C. A.
, and
Siegmund
,
G. P.
,
2016
, “
Age Does Not Affect the Material Properties of Expanded Polystyrene Liners in Field-Used Bicycle Helmets
,”
ASME J. Biomech. Eng.
,
138
(
4
), p.
041005
.10.1115/1.4032804
11.
Shuaeib
,
F. M.
,
Hamouda
,
A. M. S.
,
Hamdan
,
M. M.
,
Umar
,
R. S. R.
, and
Hashmi
,
M. S. J.
,
2002
, “
Motorcycle Helmet. Part III. Manufacturing Issues
,”
J. Mater. Process. Technol.
,
123
(
3
), pp.
432
439
.10.1016/S0924-0136(02)00046-8
12.
Skinner
,
S. J.
,
Baxter
,
S.
, and
Grey
,
P. J.
,
1964
, “
Some Aspects of the Steam Moulding Process for Expandable Polystyrene
,”
Trans. J. Plast. Inst.
,
32
, pp.
180
187
.
13.
Vaitkus
,
S.
,
Laukaitis
,
A.
,
Gnipas
,
I.
,
Kersulis
,
V.
, and
Vejelis
,
S.
,
2006
, “
Experimental Analysis of Structure and Deformation Mechanisms of Expanded Polystyrene (EPS) Slabs
,”
Mater. Sci.
,
12
(
4
), pp.
323
327
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.9083&rep=rep1&type=pdf
14.
Consumer Product Safety Commission
,
1998
, “
Safety Standard for Bicycle Helmets; Final Rule, 16 CFR Part 1203
,”
Fed. Regist.
,
63
(
46
), pp.
11711
11747
.https://www.ecfr.gov/cgi-bin/text-idx?SID=df29a1b887d06b948777e8922a6a797b&mc=true&node=pt16.2.1203&rgn=div5
15.
McIntosh
,
A.
, and
Dowdel
,
B.
,
1992
, “
A Field and Laboratory Study of the Performance of Pedal Cycle Helmets in Real Accidents
,”
IRCOBI Conference
,
Verona, Italy
, Sept. 9–11, 20, pp.
51
60
.
16.
McIntosh
,
A. S.
, and
Patton
,
D. A.
,
2012
, “
Impact Reconstruction From Damage of Pedal and Motorcycle Helmets
,”
Proc. Inst. Mech. Eng.
, Part P,
226
, pp.
274
281
.10.1177/1754337111435294
17.
Smith
,
T. A.
,
Tees
,
D.
,
Thom
,
D. R.
, and
Hurt
,
H. H.
, Jr.
,
1994
, “
Evaluation and Replication of Impact Damage to Bicycle Helmets
,”
Accid. Anal. Prev.
,
26
(
6
), pp.
795
802
.10.1016/0001-4575(94)90055-8
18.
ASTM International
,
2012
, “
Standard Specification for Helmets Used in Recreational Bicycling or Roller Skating
,”
ASTM International
,
West Conshohocken, PA
, ASTM Standard No. F1447-12.
19.
ASTM International
,
2008
, “
Standard Specification for Helmets Used in Skateboarding and Trick Roller Skating
,”
ASTM International
,
West Conshohocken, PA
, ASTM Standard No. F1492-08.
20.
ASTM International
,
2011
, “
Standard Specification for Helmets Used for Recreational Snow Sports
,”
ASTM International
,
West Conshohocken, PA
, ASTM Standard No. F2040-11.
21.
European Committee for Standardization
,
2007
, “
Helmets for Alpine Skiers and Snowboarders
,”
European Committee for Standardization
,
Brussels, Belgium
, Standard No. EN 1077:2007.
22.
European Committee for Standardization
,
2012
, “
Helmets for Pedal Cyclists and for Users of Skateboards and Roller Skates
,”
European Committee for Standardization
,
Brussels, Belgium
, Standard No. EN 1078:2012.
23.
Doroudiani
,
S.
, and
Kortschot
,
M. T.
,
2003
, “
Polystyrene Foams Processing-Structure Relationships
,”
J. Appl. Polym. Sci.
,
90
(
5
), pp.
1412
1420
.10.1002/app.12804
24.
Hughes
,
S. W.
,
2005
, “
Archimedes Revisited a Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects
,”
Phys. Educ.
,
40
(
5
), pp.
468
474
.10.1088/0031-9120/40/5/008
25.
Tilton
,
L. W.
, and
Taylor
,
J. K.
,
1937
, “
Accurate Representation of the Refractivity and Density of Distilled Water as a Function of Temperature
,”
Research Paper RP971
,
National Bureau of Standards, U.S. Department of Commerce
, Washington, DC, pp.
205
214
.
26.
DeMarco
,
A. L.
,
Good
,
C. A.
,
Chimich
,
D. D.
,
Bakal
,
J. A.
, and
Siegmund
,
G. P.
,
2017
, “
Age Has a Minimal Effect on the Impact Performance of Field-Used Bicycle Helmets
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1974
1984
.10.1007/s10439-017-1842-4
27.
Chang
,
L.-T.
,
Chang
,
C.-H.
,
Huang
,
J.-Z.
, and
Chang
,
G.-L.
,
1999
, “
A Dynamic Analysis of Motorcycle Helmet by Finite Element Methods
,”
IRCOBI Conference
, Sitges, Spain, Sept. 23, pp.
371
382
.
28.
Yettram
,
A. L.
,
Godfrey
,
N. P. M.
, and
Chinn
,
B. P.
,
1994
, “
Materials for Motorcycle Crash Helmets—A Finite Element Parametric Study
,”
Plast., Rubber Compos. Process. Appl.
,
22
(
4
), pp.
215
221
.
29.
Smith
,
T. A.
,
1997
, “The Effect of Helmet Liner Density Upon Acceleration and Local Contact Forces During Bicycle Helmet Impacts,” Ph.D. dissertation,
University of Southern California
,
Los Angeles, CA
.
30.
DeMarco
,
A. L.
,
Chimich
,
D. D.
,
Gardiner
,
J. C.
, and
Siegmund
,
G. P.
,
2016
, “
The Impact Response of Traditional and BMX-Style Bicycle Helmets at Different Impact Severities
,”
Accid. Anal. Prev.
,
92
, pp.
175
183
.10.1016/j.aap.2016.03.027
31.
Bonin
,
S. J.
,
Gardiner
,
J. C.
,
Onar-Thomas
,
A.
,
Asfour
,
S. S.
, and
Siegmund
,
G. P.
,
2017
, “
The Effect of Motorcycle Helmet Fit on Estimating Head Impact Kinematics From Residual Liner Crush
,”
Accid. Anal. Prev.
,
106
, pp.
315
326
.10.1016/j.aap.2017.06.015
32.
Mertz
,
H. G.
,
Irwin
,
A. L.
, and
Prasad
,
P.
,
2003
,
Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values (2003-22-0009)
,
Society of Automotive Engineers
,
Warrendale, PA
.
33.
Williams
,
M.
,
1991
, “
The Protective Performance of Bicyclists' Helmets in Accidents
,”
Accid. Anal. Prev.
,
23
(
2–3
), pp.
119
131
.10.1016/0001-4575(91)90043-5
34.
Mills
,
N. J.
, and
Kang
,
P.
,
1994
, “
The Effect of Water Immersion on the Mechanical Properties of Polystyrene Bead Foam Used in Soft Shell Cycle Helmets
,”
J. Cell. Plast.
,
30
(
3
), pp.
196
221
.10.1177/0021955X9403000301
You do not currently have access to this content.