Abstract

Although predicted hip joint center (HJC) locations are known to vary widely between functional methods, no previous investigation has detailed functional method-dependent hip and knee biomechanics. The purpose of this study was to define a normative database of hip joint biomechanics during dynamic movements based upon functional HJC methods and calibration tasks. Thirty healthy young adults performed arc, star arc, and two-sided calibration tasks. Motion capture and ground reaction forces were collected during walking, running, and single-leg landings (SLLs). Two sphere-fit (geometric and algebraic) and two coordinate transformation techniques were implemented using each calibration (12 total method–calibration combinations). Surprisingly, the geometric fit-two-sided model placed the HJC at the midline of the pelvis and above the iliac spines, and thus was removed from analyses. A database of triplanar hip and knee kinematics and hip moments and powers was constructed using the mean of all subjects for the eleven method–calibration combinations. A nested analysis of variance approach compared calibration [method] peak hip kinematics and kinetics. Most method differences existed between geometric fit and coordinate transformations (58 of 84 total). No arc-star arc differences were found. Thirty-two differences were found between the two-sided and arc/star arc calibrations. This database of functional method based hip and knee biomechanics serves as an important reference point for interstudy comparisons. Overall, this study illustrates that functional HJC method can dramatically impact hip biomechanics and should be explicitly detailed in future work.

References

1.
Fiorentino
,
N. M.
,
Atkins
,
P. R.
,
Kutschke
,
M. J.
,
Foreman
,
K. B.
, and
Anderson
,
A. E.
,
2016
, “
In-Vivo Quantification of Dynamic Hip Joint Center Errors and Soft Tissue Artifact
,”
Gait Posture
,
50
, pp.
246
251
.10.1016/j.gaitpost.2016.09.011
2.
Fiorentino
,
N. M.
,
Kutschke
,
M. J.
,
Atkins
,
P. R.
,
Foreman
,
K. B.
,
Kapron
,
A. L.
, and
Anderson
,
A. E.
,
2016
, “
Accuracy of Functional and Predictive Methods to Calculate the Hip Joint Center in Young Non-Pathologic Asymptomatic Adults With Dual Fluoroscopy as a Reference Standard
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2168
2180
.10.1007/s10439-015-1522-1
3.
Stagni
,
R.
,
Leardini
,
A.
,
Cappozzo
,
A.
,
Benedetti
,
M. G.
, and
Cappello
,
A.
,
2000
, “
Effects of Hip Joint Centre Mislocation on Gait Analysis Results
,”
J. Biomech.
,
33
(
11
), pp.
1479
1487
.10.1016/S0021-9290(00)00093-2
4.
Bell
,
A. L.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
,
1990
, “
A Comparison of the Accuracy of Several Hip Joint Center Location Prediction Methods
,”
J. Biomech.
,
23
(
6
), pp.
617
621
.10.1016/0021-9290(90)90054-7
5.
Bennett
,
H. J.
,
Shen
,
G.
,
Weinhandl
,
J. T.
, and
Zhang
,
S.
,
2016
, “
Validation of the Greater Trochanter Method With Radiographic Measurements of Frontal Plane Hip Joint Centers and Knee Mechanical Axis Angles and Two Other Hip Joint Center Methods
,”
J. Biomech.
,
49
(
13
), pp.
3047
3051
.10.1016/j.jbiomech.2016.06.013
6.
Davis
,
R. B.
,
Ounpuu
,
S.
,
Tyburski
,
D.
, and
Gage
,
J. R.
,
1991
, “
A Gait Analysis Data Collection and Reduction Technique
,”
Hum. Mov. Sci.
,
10
(
5
), pp.
575
587
.10.1016/0167-9457(91)90046-Z
7.
Harrington
,
M. E.
,
Zavatsky
,
A. B.
,
Lawson
,
S. E.
,
Yuan
,
Z.
, and
Theologis
,
T. N.
,
2007
, “
Prediction of the Hip Joint Centre in Adults, Children, and Patients With Cerebral Palsy Based on Magnetic Resonance Imaging
,”
J. Biomech.
,
40
(
3
), pp.
595
602
.10.1016/j.jbiomech.2006.02.003
8.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2006
, “
A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints
,”
J. Biomech.
,
39
(
15
), pp.
2798
2809
.10.1016/j.jbiomech.2005.10.002
9.
Gamage
,
S. S. H. U.
, and
Lasenby
,
J.
,
2002
, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
,
35
(
1
), pp.
87
93
.10.1016/S0021-9290(01)00160-9
10.
Halvorsen
,
K.
,
2003
, “
Bias Compensated Least Squares Estimate of the Center of Rotation
,”
J. Biomech.
,
36
(
7
), pp.
999
1008
.10.1016/S0021-9290(03)00070-8
11.
Piazza
,
S. J.
,
Okita
,
N.
, and
Cavanagh
,
P. R.
,
2001
, “
Accuracy of the Functional Method of Hip Joint Center Location: Effects of Limited Motion and Varied Implementation
,”
J. Biomech.
,
34
(
7
), pp.
967
973
.10.1016/S0021-9290(01)00052-5
12.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2005
, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
,
38
(
1
), pp.
107
116
.10.1016/j.jbiomech.2004.03.009
13.
Peters
,
A.
,
Baker
,
R.
,
Morris
,
M. E.
, and
Sangeux
,
M.
,
2012
, “
A Comparison of Hip Joint Centre Localisation Techniques With 3-D U.S. for Clinical Gait Analysis in Children With Cerebral Palsy
,”
Gait Posture
,
36
(
2
), pp.
282
286
.10.1016/j.gaitpost.2012.03.011
14.
Peters
,
A.
,
Baker
,
R.
, and
Sangeux
,
M.
,
2010
, “
Validation of 3-D Freehand Ultrasound for the Determination of the Hip Joint Centre
,”
Gait Posture
,
31
(
4
), pp.
530
532
.10.1016/j.gaitpost.2010.01.014
15.
Sangeux
,
M.
,
Peters
,
A.
, and
Baker
,
R.
,
2011
, “
Hip Joint Centre Localization: Evaluation on Normal Subjects in the Context of Gait Analysis
,”
Gait Posture
,
34
(
3
), pp.
324
328
.10.1016/j.gaitpost.2011.05.019
16.
Sangeux
,
M.
,
Pillet
,
H.
, and
Skalli
,
W.
,
2014
, “
Which Method of Hip Joint Centre Localisation Should Be Used in Gait Analysis?
,”
Gait Posture
,
40
(
1
), pp.
20
25
.10.1016/j.gaitpost.2014.01.024
17.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.10.1016/S0021-9290(03)00087-3
18.
Kainz
,
H.
,
Hajek
,
M.
,
Modenese
,
L.
,
Saxby
,
D. J.
,
Lloyd
,
D. G.
, and
Carty
,
C. P.
,
2017
, “
Reliability of Functional and Predictive Methods to Estimate the Hip Joint Centre in Human Motion Analysis in Healthy Adults
,”
Gait Posture
,
53
, pp.
179
184
.10.1016/j.gaitpost.2017.01.023
19.
Weinhandl
,
J. T.
, and
O'Connor
,
K. M.
,
2010
, “
Assessment of a Greater Trochanter-Based Method of Locating the Hip Joint Center
,”
J. Biomech.
,
43
(
13
), pp.
2633
2636
.10.1016/j.jbiomech.2010.05.023
20.
Assi
,
A.
,
Sauret
,
C.
,
Massaad
,
A.
,
Bakouny
,
Z.
,
Pillet
,
H.
,
Skalli
,
W.
, and
Ghanem
,
I.
,
2016
, “
Validation of Hip Joint Center Localization Methods During Gait Analysis Using 3D EOS Imaging in Typically Developing and Cerebral Palsy Children
,”
Gait Posture
,
48
, pp.
30
35
.10.1016/j.gaitpost.2016.04.028
21.
Hicks
,
J. L.
, and
Richards
,
J. G.
,
2005
, “
Clinical Applicability of Using Spherical Fitting to Find Hip Joint Centers
,”
Gait Posture
,
22
(
2
), pp.
138
145
.10.1016/j.gaitpost.2004.08.004
22.
Leardini
,
A.
,
Cappozzo
,
A.
,
Catani
,
F.
,
Toksvig-Larsen
,
S.
,
Petitto
,
A.
,
Sforza
,
V.
,
Cassanelli
,
G.
, and
Giannini
,
S.
,
1999
, “
Validation of a Functional Method for the Estimation of Hip Joint Centre Location
,”
J. Biomech.
,
32
(
1
), pp.
99
103
.10.1016/S0021-9290(98)00148-1
23.
Kainz
,
H.
,
Carty
,
C. P.
,
Modenese
,
L.
,
Boyd
,
R. N.
, and
Lloyd
,
D. G.
,
2015
, “
Estimation of the Hip Joint Centre in Human Motion Analysis: A Systematic Review
,”
Clin. Biomech.
,
30
(
4
), pp.
319
329
.10.1016/j.clinbiomech.2015.02.005
24.
Cappozzo
,
A.
,
1984
, “
Gait Analysis Methodology
,”
Hum. Mov. Sci.
,
3
(
1–2
), pp.
27
50
.10.1016/0167-9457(84)90004-6
25.
MacWilliams
,
B. A.
,
2008
, “
A Comparison of Four Functional Methods to Determine Centers and Axes of Rotations
,”
Gait Posture
,
28
(
4
), pp.
673
679
.10.1016/j.gaitpost.2008.05.010
26.
Piazza
,
S. J.
,
Erdemir
,
A.
,
Okita
,
N.
, and
Cavanagh
,
P. R.
,
2004
, “
Assessment of the Functional Method of Hip Joint Center Location Subject to Reduced Range of Hip Motion
,”
J. Biomech.
,
37
(
3
), pp.
349
356
.10.1016/S0021-9290(03)00288-4
27.
Siston
,
R. A.
, and
Delp
,
S. L.
,
2006
, “
Evaluation of a New Algorithm to Determine the Hip Joint Center
,”
J. Biomech.
,
39
(
1
), pp.
125
130
.10.1016/j.jbiomech.2004.10.032
28.
Taylor
,
W. R.
,
Kornaropoulos
,
E. I.
,
Duda
,
G. N.
,
Kratzenstein
,
S.
,
Ehrig
,
R. M.
,
Arampatzis
,
A.
, and
Heller
,
M. O.
,
2010
, “
Repeatability and Reproducibility of OSSCA, a Functional Approach for Assessing the Kinematics of the Lower Limb
,”
Gait Posture
,
32
(
2
), pp.
231
236
.10.1016/j.gaitpost.2010.05.005
29.
Camomilla
,
V.
,
Cereatti
,
A.
,
Vannozzi
,
G.
, and
Cappozzo
,
A.
,
2006
, “
An Optimized Protocol for Hip Joint Centre Determination Using the Functional Method
,”
J. Biomech.
,
39
(
6
), pp.
1096
1106
.10.1016/j.jbiomech.2005.02.008
30.
Cereatti
,
A.
,
Donati
,
M.
,
Camomilla
,
V.
,
Margheritini
,
F.
, and
Cappozzo
,
A.
,
2009
, “
Hip Joint Centre Location: An Ex Vivo Study
,”
J. Biomech.
,
42
(
7
), pp.
818
823
.10.1016/j.jbiomech.2009.01.031
31.
Kainz
,
H.
,
Carty
,
C. P.
,
Maine
,
S.
,
Walsh
,
H. P. J.
,
Lloyd
,
D. G.
, and
Modenese
,
L.
,
2017
, “
Effects of Hip Joint Centre Mislocation on Gait Kinematics of Children With Cerebral Palsy Calculated Using Patient-Specific Direct and Inverse Kinematic Models
,”
Gait Posture
,
57
, pp.
154
160
.10.1016/j.gaitpost.2017.06.002
32.
Kirkwood
,
R. N.
,
Culham
,
E. G.
, and
Costigan
,
P.
,
1999
, “
Radiographic and Non-Invasive Determination of the Hip Joint Center Location: Effect on Hip Joint Moments
,”
Clin. Biomech.
,
14
(
4
), pp.
227
235
.10.1016/S0268-0033(98)00073-4
33.
Sinclair
,
J.
, and
Bottoms
,
L.
,
2013
, “
Methods of Determining Hip Joint Centre: Their Influence on the 3-D Kinematics of the Hip and Knee During the Fencing Lunge
,”
Hum. Mov.
,
14
(
3
), pp.
229
237
.10.2478/humo-2013-0028
34.
Żuk
,
M.
,
Świątek-Najwer
,
E.
, and
Pezowicz
,
C.
,
2014
, “
Hip Joint Centre Localization: Evaluation of Formal Methods and Effects on Joint Kinematics
,” Information Technologies in Biomedicine, Vol.
4
, Springer, Cham, Switzerland, pp.
57
67
.
35.
Bennett
,
H. J.
,
Fleenor
,
K.
, and
Weinhandl
,
J. T.
,
2018
, “
A Normative Database of Hip and Knee Joint Biomechanics During Dynamic Tasks Using Anatomical Regression Prediction Methods
,”
J. Biomech.
,
81
(
16
), pp.
122
131
.10.1016/j.jbiomech.2018.10.003
36.
Aizawa
,
J.
,
Ohji
,
S.
,
Koga
,
H.
,
Masuda
,
T.
, and
Yagishita
,
K.
,
2016
, “
Correlations Between Sagittal Plane Kinematics and Landing Impact Force During Single-Leg Lateral Jump-Landings
,”
J. Phys. Ther. Sci.
,
28
(
8
), pp.
2316
2321
.10.1589/jpts.28.2316
37.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
, and
Dunbar
,
M. J.
,
2008
, “
Biomechanical Changes at the Hip, Knee, and Ankle Joints During Gait Are Associated With Knee Osteoarthritis Severity
,”
J. Orthop. Res.
,
26
(
3
), pp.
332
341
.10.1002/jor.20496
38.
Decker
,
M. J.
,
Torry
,
M. R.
,
Wyland
,
D. J.
,
Sterett
,
W. I.
, and
Richard Steadman
,
J.
,
2003
, “
Gender Differences in Lower Extremity Kinematics, Kinetics and Energy Absorption During Landing
,”
Clin. Biomech.
,
18
(
7
), pp.
662
669
.10.1016/S0268-0033(03)00090-1
39.
Donohue
,
M. R.
,
Ellis
,
S. M.
,
Heinbaugh
,
E. M.
,
Stephenson
,
M. L.
,
Zhu
,
Q.
, and
Dai
,
B.
,
2015
, “
Differences and Correlations in Knee and Hip Mechanics During Single-Leg Landing, Single-Leg Squat, Double-Leg Landing, and Double-Leg Squat Tasks
,”
Res. Sports Med.
,
23
(
4
), pp.
394
411
.10.1080/15438627.2015.1076413
40.
Kulas
,
A.
,
Zalewski
,
P.
,
Hortobagyi
,
T.
, and
DeVita
,
P.
,
2008
, “
Effects of Added Trunk Load and Corresponding Trunk Position Adaptations on Lower Extremity Biomechanics During Drop-Landings
,”
J. Biomech.
,
41
(
1
), pp.
180
185
.10.1016/j.jbiomech.2007.06.027
41.
McLean
,
S. G.
,
Lipfert
,
S. W.
, and
Van den Bogert
,
A. J.
,
2004
, “
Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting
,”
Med. Sci. Sports Exerc.
,
36
(
6
), pp.
1008
1016
.10.1249/01.MSS.0000128180.51443.83
42.
Myer
,
G. D.
,
Bates
,
N. A.
,
DiCesare
,
C. A.
,
Foss
,
K. D. B.
,
Thomas
,
S. M.
,
Wordeman
,
S. C.
,
Sugimoto
,
D.
,
Roewer
,
B. D.
,
McKeon
,
J. M. M.
,
Di Stasi
,
S. L.
,
Noehren
,
B. W.
,
McNally
,
M.
,
Ford
,
K. R.
,
Kiefer
,
A. W.
, and
Hewett
,
T. E.
,
2015
, “
Reliability of 3-Dimensional Measures of Single-Leg Drop Landing Across 3 Institutions: Implications for Multicenter Research for Secondary ACL-Injury Prevention
,”
J. Sport Rehabil.
,
24
(
2
), pp.
198
209
.10.1123/jsr.2014-0237
43.
Nordin
,
A. D.
, and
Dufek
,
J. S.
,
2016
, “
Single-Leg Landing Neuromechanical Data Following Load and Land Height Manipulations
,”
Data Brief
,
8
(
8
), pp.
1024
1030
.10.1016/j.dib.2016.07.011
44.
Yeow
,
C. H.
,
Lee
,
P. V. S.
, and
Goh
,
J. C. H.
,
2011
, “
An Investigation of Lower Extremity Energy Dissipation Strategies During Single-Leg and Double-Leg Landing Based on Sagittal and Frontal Plane Biomechanics
,”
Hum. Mov. Sci.
,
30
(
3
), pp.
624
635
.10.1016/j.humov.2010.11.010
45.
Bennett
,
H. J.
,
Shen
,
G.
,
Cates
,
H. E.
, and
Zhang
,
S.
,
2017
, “
Effects of Toe-in and Toe-in With Wider Step Width on Level Walking Knee Biomechanics in Varus, Valgus, and Neutral Knee Alignments
,”
Knee
,
24
(
6
), pp.
1326
1334
.10.1016/j.knee.2017.08.058
46.
Bennett
,
H. J.
,
Brock
,
E.
,
Brosnan
,
J. T.
,
Sorochan
,
J. C.
, and
Zhang
,
S.
,
2015
, “
Effects of Two Football Stud Types on Knee and Ankle Kinetics of Single-Leg Land-Cut and 180 °Cut Movements on Infilled Synthetic Turf
,”
J. Appl. Biomech.
,
31
(
5
), pp.
309
317
.10.1123/jab.2014-0203
47.
Fiorentino
,
N. M.
,
Atkins
,
P. R.
,
Kutschke
,
M. J.
,
Goebel
,
J. M.
,
Foreman
,
K. B.
, and
Anderson
,
A. E.
,
2017
, “
Soft Tissue Artifact Causes Significant Errors in the Calculation of Joint Angles and Range of Motion at the Hip
,”
Gait Posture
,
55
, pp.
184
190
.10.1016/j.gaitpost.2017.03.033
48.
Noehren
,
B.
,
Davis
,
I.
, and
Hamill
,
J.
,
2007
, “
ASB Clinical Biomechanics Award Winner 2006 Prospective Study of the Biomechanical Factors Associated With Iliotibial Band Syndrome
,”
Clin. Biomech.
,
22
(
9
), pp.
951
956
.10.1016/j.clinbiomech.2007.07.001
49.
Baker
,
R. L.
,
Souza
,
R. B.
,
Rauh
,
M. J.
,
Fredericson
,
M.
, and
Rosenthal
,
M. D.
,
2018
, “
Differences in Knee and Hip Adduction and Hip Muscle Activation in Runners With and Without Iliotibial Band Syndrome
,”
Pm R.
,
10
(
10
), pp.
1032
1039
.10.1016/j.pmrj.2018.04.004
50.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
51.
Kainz
,
H.
,
Modenese
,
L.
,
Lloyd
,
D. G.
,
Maine
,
S.
,
Walsh
,
H. P. J.
, and
Carty
,
C. P.
,
2016
, “
Joint Kinematic Calculation Based on Clinical Direct Kinematic Versus Inverse Kinematic Gait Models
,”
J Biomech
,
49
(
9
), pp.
1658
1669
.
You do not currently have access to this content.