Abstract

Precise description of vascular morphometry is crucial to support medical device manufacturers and clinicians for improving device development and interventional outcomes. A compact and intuitive method is presented to automatically characterize the surface geometry of tubular anatomic structures and quantify surface curvatures starting from generic stereolithographic (STL) surfaces. The method was validated with software phantoms and used to quantify the longitudinal surface curvatures of 37 human thoracic aortas with aneurysm or dissection. The quantification of surface curvatures showed good agreement with analytic solutions from the software phantoms, and demonstrated better agreement as compared to estimation methods using only centerline geometry and cross-sectional radii. For the human thoracic aortas, longitudinal inner surface curvature was significantly higher than centerline curvature (0.33 ± 0.06 versus 0.16 ± 0.02 cm−1 for mean; 1.38 ± 0.48 versus 0.45 ± 0.11 cm−1 for peak; both p < 0.001). These findings show the importance of quantifying surface curvatures in order to better describe the geometry and biomechanical behavior of the thoracic aorta, which can assist in treatment planning and supplying device manufactures with more precise boundary conditions for mechanical evaluation.

References

1.
Brady
,
A. R.
,
Thompson
,
S. G.
,
Fowkes
,
G. R.
,
Greenhalgh
,
R. M.
, and
Powell
,
J. T.
,
2004
, “
Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance
,”
Circulation
,
110
(
1
), pp.
16
21
.10.1161/01.CIR.0000133279.07468.9F
2.
Nomura
,
Y.
,
Sugimoto
,
K.
,
Gotake
,
Y.
,
Yamanaka
,
K.
,
Sakamoto
,
T.
,
Muradi
,
A.
,
Okada
,
T.
,
Yamaguchi
,
M.
, and
Okita
,
Y.
,
2015
, “
Comparison of Volumetric and Diametric Analysis in Endovascular Repair of Descending Thoracic Aortic Aneurysm
,”
Eur. J. Vasc. Endovascular Surg.
,
50
(
1
), pp.
53
59
.10.1016/j.ejvs.2015.02.021
3.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.10.1007/s10439-010-0175-3
4.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
,
1998
, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
,
27
(
4
), pp.
632
639
.10.1016/S0741-5214(98)70227-7
5.
Cheng
,
C. P.
,
Choi
,
C.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2010
, “
The Effect of Aging on Deformations of the Superficial Femoral Artery Due to Hip and Knee Flexion: Potential Clinical Implications
,”
J. Vasc. Interventional Radiol.
,
21
(
2
), pp.
195
202
.10.1016/j.jvir.2009.08.027
6.
Chinikar
,
M.
, and
Sadeghipour
,
P.
,
2014
, “
Coronary Stent Fracture: A Recently Appreciated Phenomenon With Clinical Relevance
,”
Curr. Cardiol. Rev.
,
10
(
4
), pp.
349
352
.10.2174/1573403X10666140404105923
7.
Nikanorov
,
A.
,
Smouse
,
H. B.
,
Osman
,
K.
,
Bialas
,
M.
,
Shrivastava
,
S.
, and
Schwartz
,
L. B.
,
2008
, “
Fracture of Self-Expanding Nitinol Stents Stressed In Vitro Under Stimulated Intravascular Conditions
,”
J. Vasc. Surg.
,
48
(
2
), pp.
435
440
.10.1016/j.jvs.2008.02.029
8.
Robertson
,
S. W.
,
Cheng
,
C. P.
, and
Razavi
,
M. K.
,
2008
, “
Biomechanical Response of Stented Carotid Arteries Swallowing and Neck Motion
,”
J. Endovascular Ther.
,
15
(
6
), pp.
663
671
.10.1583/08-2528.1
9.
Ueda
,
T.
,
Takaoka
,
H.
,
Petrovitch
,
I.
, and
Rubin
,
G. D.
,
2014
, “
Detection of Broken Sutures and Metal Ring Fractures in AneuRx Stent-Grafts by Using Three-Dimensional CT Angiography After Endovascular Abdominal Aortic Aneurysm Repair: Association With Late Endoleak Development and Device Migration
,”
Radiology
,
272
(
1
), pp.
275
283
.10.1148/radiol.14130920
10.
Fata
,
B.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Estimated In Vivo Postnatal Surface Growth Patterns of the Ovine Main Pulmonary Artery and Ascending Aorta
,”
ASME J. Biomech. Eng.
,
135
(
7
), p. 0
71010
.10.1115/1.4024619
11.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Vorp
,
D. A.
, and
Thornton
,
M.
,
2000
, “
Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation
,”
Ann. Biomed. Eng.
,
28
(
6
), pp.
598
611
.10.1114/1.1306342
12.
Lundh
,
T.
,
Suh
,
G.-Y.
,
Digiacomo
,
P.
, and
Cheng
,
C. P.
,
2018
, “
A Lagrangian Cylindrical Coordinate System for Characterizing Dynamic Surface Geometry of Tubular Anatomic Structures
,”
Med. Biol. Eng. Comput.
,
56
(
9
), pp.
1659
1668
.10.1007/s11517-018-1801-8
13.
Cheng
,
C. P.
,
Zhu
,
Y. D.
, and
Suh
,
G.-Y.
,
2018
, “
Optimization of Three-Dimensional Modeling for Geometric Precision and Efficiency for Healthy and Diseased Aortas
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
1
), pp.
65
74
.10.1080/10255842.2017.1423291
14.
Wilson
,
N.
,
Wang
,
K.
,
Dutton
,
R. W.
, and
Taylor
,
C. A.
,
2001
, “
A Software Framework for Creating Patient Specific Geometric Models From Medical Imaging Data for Simulation Based Medical Planning of Vascular Surgery
,”
Lect. Notes Comput. Sci.
,
2208
, pp.
449
456
.10.1007/3-540-45468-3
15.
Choi
,
G.
,
Cheng
,
C. P.
,
Wilson
,
N. M.
, and
Taylor
,
C. A.
,
2009
, “
Methods for Quantifying Three-Dimensional Deformation of Arteries Due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
14
33
.10.1007/s10439-008-9590-0
16.
Farouki
,
R. T.
, and
Neff
,
C. A.
,
1990
, “
Analytic Properties of Plane Offset Curves
,”
Comput. Aided Geom. Des.
,
7
(
1–4
), pp.
83
99
.10.1016/0167-8396(90)90023-K
17.
Suh
,
G.-Y.
,
Beygui
,
R. E.
,
Fleischmann
,
D.
, and
Cheng
,
C. P.
,
2014
, “
Aortic Arc Vessel Geometries and Deformations in Patients With Thoracic Aortic Aneurysms and Dissections
,”
J. Vasc. Interventional Radiol.
,
25
(
12
), pp.
1903
1911
.10.1016/j.jvir.2014.06.012
18.
Ullery
,
B. W.
,
Suh
,
G.-Y.
,
Hirotsu
,
K.
,
Zhu
,
D.
,
Lee
,
J. T.
,
Dake
,
M. D.
,
Fleischmann
,
D.
, and
Cheng
,
C. P.
,
2018
, “
Geometric Deformations of the Thoracic Aorta and Supra-Aortic Arch Branch Vessels Following Thoracic Endovascular Aortic Repair
,”
Vasc. Endovascular Surg.
,
52
(
3
), pp.
173
180
.10.1177/1538574417753452
19.
Holm
,
S.
,
1979
, “
A Simple Sequentially Rejective Multiple Test Procedure
,”
Scand. J. Stat.
,
6
(
2
), pp.
65
70
.10.2307/4615733
20.
de Galarreta
,
S. R.
,
Cazon
,
A.
,
Anton
,
R.
, and
Finol
,
E. A.
,
2017
, “
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081006
.10.1115/1.4036826
21.
Lee
,
K.
,
Zhu
,
J.
,
Shum
,
J.
,
Zhang
,
Y.
,
Muluk
,
S. C.
,
Chandra
,
A.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2013
, “
Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
562
576
.10.1007/s10439-012-0691-4
22.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.10.1016/j.jbiomech.2006.09.003
23.
Dobrin
,
P. B.
,
1988
, “
Mechanics of Normal and Diseased Blood Vessels
,”
Ann. Vasc. Surg.
,
2
(
3
), pp.
283
294
.10.1016/S0890-5096(07)60016-8
24.
Kudo
,
T.
,
Kuratani
,
T.
,
Shimamura
,
K.
,
Sakamoto
,
T.
,
Kin
,
K.
,
Masada
,
K.
,
Shijo
,
T.
,
Torikai
,
K.
,
Maeda
,
K.
, and
Sawa
,
Y.
,
2017
, “
Type 1a Endoleak Following Zine 1 and Zone 2 Thoracic Endovascular Aortic Repair: Effect of Bird-Beak Configuration
,”
Eur. J. Cardiothorac. Surg.
,
52
(
4
), pp.
718
724
.10.1093/ejcts/ezx254
You do not currently have access to this content.