Abstract

Carrying heavy loads costs additional energy during walking and leads to fatigue of the user. Conventionally, the load is fixed on the body. Some recent studies showed energy cost reduction when the relative motion of the load with respect to the body was allowed. However, the influences of the load's relative motion on the user are still not fully understood. We employed an optimization-based biped model, which can generate human-like walking motion to study the load–carrier interaction. The relative motion can be achieved by a passive mechanism (such as springs) or a powered mechanism (such as actuators), and the relative motion can occur in the vertical or fore-aft directions. The connection between the load and body is added to the biped model in four scenarios (two types × two directions). The optimization results indicate that the stiffness values affect energy cost differently and the same stiffness value in different directions may have opposite effects. Powered relative motion in either direction can potentially reduce energy cost but the vertical relative motion can achieve a higher reduction than fore-aft relative motion. Surprisingly, powered relative motion only performs marginally better than the passive conditions at similar peak interaction force levels. This work provides insights into developing more economical load-carrying methods and the model presented may be applied to the design and control of wearable load-carrying devices.

References

1.
Malhotra
,
M. S.
, and
Gupta
,
J. S.
,
1965
, “
Carrying of School Bags by Children
,”
Ergonomics
,
8
(
1
), pp.
55
60
.10.1080/00140136508930774
2.
Knapik
,
J. J.
,
Reynolds
,
K. L.
, and
Harman
,
E.
,
2004
, “
Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects
,”
Milit. Med.
,
169
(
1
), pp.
45
56
.10.7205/MILMED.169.1.45
3.
Simpson
,
K. M.
,
Munro
,
B. J.
, and
Steele
,
J. R.
,
2011
, “
Effect of Load Mass on Posture, Heart Rate and Subjective Responses of Recreational Female Hikers to Prolonged Load Carriage
,”
Appl. Ergon.
,
42
(
3
), pp.
403
410
.10.1016/j.apergo.2010.08.018
4.
Taylor
,
C. R.
,
Heglund
,
N. C.
,
Mcmahon
,
T. A.
, and
Looney
,
T. R.
,
1980
, “
Energetic Cost of Generating Muscular Force During Running—A Comparison of Large and Small Animals
,”
J. Exp. Biol.
,
86
(
1
), pp.
9
18
.https://jeb.biologists.org/content/86/1/9.short
5.
Quesada
,
P. M.
,
Mengelkoch
,
L. J.
,
Hale
,
R. C.
, and
Simon
,
S. R.
,
2000
, “
Biomechanical and Metabolic Effects of Varying Backpack Loading on Simulated Marching
,”
Ergonomics.
,
43
(
3
), pp.
293
309
.10.1080/001401300184413
6.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
43
.10.1186/s12984-016-0150-9
7.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Humanoid Robot.
,
04
(
03
), pp.
487
506
.10.1142/S0219843607001126
8.
Yu
,
S.
,
Lee
,
H.
,
Kim
,
W.
, and
Han
,
C.
,
2016
, “
Development of an Underactuated Exoskeleton for Effective Walking and Load-Carrying Assist
,”
Adv. Rob.
,
30
(
8
), pp.
535
551
.10.1080/01691864.2015.1135080
9.
Maloiy
,
G. M. O.
,
Heglund
,
N. C.
,
Prager
,
L. M.
,
Cavagna
,
G. A.
, and
Taylor
,
C. R.
,
1986
, “
Energetic Cost of Carrying Loads: Have African Women Discovered an Economic Way?
,”
Nature
,
319
(
6055
), p.
668
.10.1038/319668a0
10.
Heglund
,
N. C.
,
Willems
,
P. A.
,
Penta
,
M.
, and
Cavagna
,
G. A.
,
1995
, “
Energy-Saving Gait Mechanics With Head-Supported Loads
,”
Nature
,
375
(
6526
), pp.
52
54
.10.1038/375052a0
11.
Castillo
,
E. R.
,
Lieberman
,
G. M.
,
McCarty
,
L. S.
, and
Lieberman
,
D. E.
,
2014
, “
Effects of Pole Compliance and Step Frequency on the Biomechanics and Economy of Pole Carrying During Human Walking
,”
J. Appl. Physiol.
,
117
(
5
), pp.
507
517
.10.1152/japplphysiol.00119.2014
12.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.10.1038/4441023a
13.
Huang
,
T. W.
, and
Kuo
,
A. D.
,
2014
, “
Mechanics and Energetics of Load Carriage During Human Walking
,”
J. Exp. Biol.
,
217
(
Pt 4
), pp.
605
613
.10.1242/jeb.091587
14.
Li
,
T.
,
Li
,
Q.
,
Tao
,
L.
,
Yi
,
J.
, and
Gong
,
G.
,
2016
, “
Development of a Novel Elastic Load-Carrying Device: Design, Modeling and Analysis
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
),
Banff, AB
, Jul. 12–15, pp.
1454
1460
.10.1109/AIM.2016.7576975
15.
Park
,
J. H.
,
Stegall
,
P.
, and
Agrawal
,
S. K.
,
2016
, “
Reducing Dynamic Loads From a Backpack During Load Carriage Using an Upper Body Assistive Device
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051017
.10.1115/1.4032214
16.
Rao
,
S. S.
,
2010
,
Mechanical Vibrations
,
Prentice Hall, Upper Saddle River, NJ
.
17.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
18.
Martin
,
A. E.
, and
Schmiedeler
,
J. P.
,
2014
, “
Predicting Human Walking Gaits With a Simple Planar Model
,”
J. Biomech.
,
47
(
6
), pp.
1416
1421
.10.1016/j.jbiomech.2014.01.035
19.
Rebula
,
J. R.
, and
Kuo
,
A. D.
,
2015
, “
The Cost of Leg Forces in Bipedal Locomotion: A Simple Optimization Study
,”
PLoS One
,
10
(
2
), p.
e0117384
.10.1371/journal.pone.0117384
20.
Srinivasan
,
M.
, and
Ruina
,
A.
,
2006
, “
Computer Optimization of a Minimal Biped Model Discovers Walking and Running
,”
Nature
,
439
(
7072
), pp.
72
75
.10.1038/nature04113
21.
Cavagna
,
G. A.
,
Thys
,
H.
, and
Zamboni
,
A.
,
1976
, “
The Sources of External Work in Level Walking and Running
,”
J. Physiol.
,
262
(
3
), pp.
639
657
.10.1113/jphysiol.1976.sp011613
22.
McGrath
,
M.
,
Howard
,
D.
, and
Baker
,
R.
,
2015
, “
The Strengths and Weaknesses of Inverted Pendulum Models of Human Walking
,”
Gait Posture
,
41
(
2
), pp.
389
394
.10.1016/j.gaitpost.2014.10.023
23.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B
,
273
(
1603
), pp.
2861
2867
.10.1098/rspb.2006.3637
24.
Kuo
,
A. D.
,
2001
, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
113
120
.10.1115/1.1427703
25.
Margaria
,
R.
,
1976
,
Biomechanics and Energetics of Muscular Exercise
,
Clarendon Press
,
Oxford, UK
.
26.
Srinivasan
,
M.
,
2011
, “
Fifteen Observations on the Structure of Energy-Minimizing Gaits in Many Simple Biped Models
,”
J. R. Soc. Interface
,
8
(
54
), pp.
74
98
.10.1098/rsif.2009.0544
27.
Papatheou
,
E.
,
Green
,
P.
,
Racic
,
V.
,
Brownjohn
,
J. M. W.
, and
Sims
,
N. D.
,
2012
, “
A Short Investigation of the Effect of an Energy Harvesting Backpack on the Human Gait
,”
Active and Passive Smart Structures and Integrated Systems 2012
, p.
83410F
.10.1117/12.915524
28.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.10.1016/j.jbiomech.2008.10.012
29.
Grieve
,
D. W.
, and
Gear
,
R. J.
,
1966
, “
The Relationships Between Length of Stride, Step Frequency, Time of Swing and Speed of Walking for Children and Adults
,”
Ergonomics
,
9
(
5
), pp.
379
399
.10.1080/00140136608964399
30.
Ackerman
,
J.
, and
Seipel
,
J.
,
2014
, “
A Model of Human Walking Energetics With an Elastically-Suspended Load
,”
J. Biomech.
,
47
(
8
), pp.
1922
1927
.10.1016/j.jbiomech.2014.03.016
31.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.10.1152/jappl.1991.71.3.1119
32.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2005
, “
Dynamic Analysis of Load Carriage Biomechanics During Level Walking
,”
J. Biomech.
,
38
(
4
), pp.
853
863
.10.1016/j.jbiomech.2004.04.030
33.
Wu
,
Y. H.
,
Chen
,
K.
, and
Fu
,
C. L.
,
2016
, “
Effects of Load Connection Form on Efficiency and Kinetics of Biped Walking
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061015
.10.1115/1.4034464
34.
Li
,
D.
,
Li
,
T.
,
Li
,
Q.
,
Liu
,
T.
, and
Yi
,
J.
,
2016
, “
A Simple Model for Predicting Walking Energetics With Elastically-Suspended Backpack
,”
J. Biomech.
,
49
(
16
), pp.
4150
4153
.10.1016/j.jbiomech.2016.10.037
35.
Kulic
,
D.
,
Venture
,
G.
,
Yamane
,
K.
,
Demircan
,
E.
,
Mizuuchi
,
I.
, and
Mombaur
,
K.
,
2016
, “
Anthropomorphic Movement Analysis and Synthesis: A Survey of Methods and Applications
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
776
795
.10.1109/TRO.2016.2587744
You do not currently have access to this content.