Abstract

Biomolecules in solutions subjected to extensional strain can form aggregates, which may be important for our understanding of pathologies involving insoluble protein structures where mechanical forces are thought to be causative (e.g., tau fibers in chronic traumatic encephalopathy (CTE)). To examine the behavior of biomolecules in solution under mechanical strains requires applying rheological methods, often to very small sample volumes. There were two primary objectives in this investigation: (1) To probe flow-induced aggregation of proteins in microliter-sized samples and (2) To test the hypothesis that tau protein aggregates under extensional flow. Tau protein (isoform:3R 0 N; 36.7 kDa) was divided into 10 μl droplets and subjected to extensional strain in a modified tensiometer. Sixteen independent tests were performed where one test on a single droplet comprised three extensional events. To assess the rheological performance of the fluid/tau mixture, the diameter of the filament that formed during extension was tracked as function of time and analyzed for signs of aggregation (i.e., increased relaxation time). The results were compared to two molecules of similar and greater size (Polyethylene Oxide: PEO35, 35 kDa and PEO100, 100 kDa). Analysis showed that the tau protein solution and PEO35 are likely to have formed aggregates, albeit at relatively high extensional strain rates (∼10 kHz). The investigation demonstrates an extensional rheological method capable of determining the properties of protein solutions in μl volumes and that tau protein can aggregate when exposed to a single extensional strain with potentially significant biological implications.

References

1.
Rao
,
I.
, and
Rajagopal
,
K.
,
2001
, “
A Study of Strain-Induced Crystallization of Polymers
,”
Int. J. Solids Struct.
,
38
(
6–7
), pp.
1149
1167
.10.1016/S0020-7683(00)00079-2
2.
Hass
,
T. W.
, and
Maxwell
,
B.
,
1969
, “
Effects of Shear Stress on the Crystallization of Linear Polyethylene and Polybutene-1
,”
Polym. Eng. Sci.
,
9
(
4
), pp. 225–241.10.1002/pen.760090402
3.
Keller
,
A.
, and
Kolnaar
,
H. W. H.
,
1997
,
Flow-Induced Orientation and Structure Formation
, in Materials Science and Technology.
Wiley-VCH
, Verlagsgesellschaft mbH, Hoboken, NJ, pp.
187
268
.
4.
Mackley
,
M. R.
, and
Keller
,
A.
,
1975
, “
Flow Induced Polymer-Chain Extension and Its Relation to Fibrous Crystallization
,”
Philos. Trans. R. Soc. London
,
278
(
1276
), pp.
29
66
. 10.1098/rsta.1975.0020
5.
Young
,
J. E.
,
Posada
,
D.
,
Lopez
,
J. M.
, and
Hirsa
,
A. H.
,
2015
, “
Flow-Induced 2D Protein Crystallization: Characterization of the Coupled Interfacial and Bulk Flows
,”
Soft Matter
,
11
(
18
), pp.
3618
3628
.10.1039/C5SM00429B
6.
Paten
,
J. A.
,
Siadat
,
S. M.
,
Susilo
,
M. E.
,
Ismail
,
E. N.
,
Stoner
,
J. L.
,
Rothstein
,
J. P.
, and
Ruberti
,
J. W.
,.
2016
, “
Flow-Induced Crystallization of Collagen: A Potentially Critical Mechanism in Early Tissue Formation
,”
ACS Nano
,
10
(
5
), pp.
5027
5040
.10.1021/acsnano.5b07756
7.
Hill
,
E. K.
,
Krebs
,
B.
,
Goodall
,
D. G.
,
Howlett
,
G. J.
, and
Dunstan
,
D. E.
,
2006
, “
Shear Flow Induces Amyloid Fibril Formation
,”
Biomacromolecules
,
7
(
1
), pp.
10
13
.10.1021/bm0505078
8.
Dunstan
,
D. E.
,
Hamilton-Brown
,
P.
,
Asimakis
,
P.
,
Ducker
,
W.
, and
Bertolini
,
J.
,
2009
, “
Shear Flow Promotes Amyloid- Fibrilization
,”
Protein Eng. Des. Sel.
,
22
(
12
), pp.
741
746
.10.1093/protein/gzp059
9.
Dobson
,
J.
,
Kumar
,
A.
,
Willis
,
L. F.
,
Tuma
,
R.
,
Higazi
,
D. R.
,
Turner
,
R.
,
Lowe
,
D. C.
,
Ashcroft
,
A. E.
,
Radford
,
S. E.
,
Kapur
,
N.
, and
Brockwell
,
D. J.
,.
2017
, “
Inducing Protein Aggregation by Extensional Flow
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
18
), pp.
4673
4678
.10.1073/pnas.1702724114
10.
Clasen
,
C.
,
Gearing
,
B. P.
, and
McKinley
,
G. H.
,
2006
, “
The Flexure-Based Microgap Rheometer (FMR)
,”
J. Rheol.
,
50
(
6
), pp. 883–905.10.1122/1.2357190
11.
Kojic
,
N.
,
Bico
,
J.
,
Clasen
,
C.
, and
McKinley
,
G. H.
,
2006
, “
Ex Vivo Rheology of Spider Silk
,”
J. Exp. Biol.
,
209
(
21
), pp.
4355
4362
.10.1242/jeb.02516
12.
Dinic
,
J.
,
Biagioli
,
M.
, and
Sharma
,
V.
,
2017
, “
Pinch-Off Dynamics and Extensional Relaxation Times of Intrinsically Semi-Dilute Polymer Solutions Characterized by Dripping-Onto-Substrate Rheometry
,”
J. Polym. Sci., Part B: Polm. Phys.
,
55
(
22
), pp.
1692
1704
.10.1002/polb.24388
13.
Dinic
,
J.
,
Jimenez
,
L. N.
, and
Sharma
,
V.
,
2017
, “
Pinch-Off Dynamics and Dripping-Onto-Substrate (DoS) Rheometry of Complex Fluids
,”
Lab Chip
,
17
(
3
), pp.
460
473
.10.1039/C6LC01155A
14.
Dinic
,
J.
,
Zhang
,
Y.
,
Jimenez
,
L. N.
, and
Sharma
,
V.
,
2015
, “
Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions
,”
ACS Macro Lett.
,
4
(
7
), pp.
804
808
.10.1021/acsmacrolett.5b00393
15.
Wang
,
Y.
, and
Mandelkow
,
E.
,
2016
, “
Tau in Physiology and Pathology
,”
Nat. Rev. Neurosci.
,
17
(
1
), pp.
22
21
.10.1038/nrn.2015.1
16.
Zetterberg
,
H.
, and
Blennow
,
K.
,
2016
, “
Fluid Biomarkers for Mild Traumatic Brain Injury and Related Conditions
,”
Nat. Rev. Neurol.
,
12
(
10
), pp.
563
574
.10.1038/nrneurol.2016.127
17.
Cairns
,
N. J.
,
Dickson
,
D. W.
,
Folkerth
,
R. D.
,
Dirk Keene
,
C.
,
Litvan
,
I.
,
Perl
,
D. P.
,
Stein
,
T. D.
,
Vonsattel
,
J.-P.
,
Stewart
,
W.
,
Tripodis
,
Y.
,
Crary
,
J. F.
,
Bieniek
,
K. F.
,
Dams-O'Connor
,
K.
,
Alvarez
,
V. E.
, and
Gordon
,
W. A.
, and
McKee
,
A. C.
, and
the TBI/CTE group
,
2016
, “
The First NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy
,”
Acta Neuropathol.
,
131
(
1
), pp.
75
86
.10.1007/s00401-015-1515-z
18.
Ghajari
,
M.
,
Hellyer
,
P. J.
, and
Sharp
,
D. J.
,
2017
, “
Computational Modelling of Traumatic Brain Injury Predicts the Location of Chronic Traumatic Encephalopathy Pathology
,”
Brain
,
140
(
2
), pp.
333
343
.10.1093/brain/aww317
19.
Kampers
,
T.
,
Friedhoff
,
P.
,
Biernat
,
J.
,
Mandelkow
,
E. M.
, and
Mandelkow
,
E.
,
1996
, “
RNA Stimulates Aggregation of Microtubule-Associated Protein Tau Into Alzheimer-Like Paired Helical Filaments
,”
FEBS Lett.
,
399
(
3
), pp.
344
349
.10.1016/S0014-5793(96)01386-5
20.
Kuret
,
J.
,
Chirita
,
C. N.
,
Congdon
,
E. E.
,
Kannanayakal
,
T.
,
Li
,
G.
,
Necula
,
M.
,
Yin
,
H.
, and
Zhong
,
Q.
,
2005
, “
Pathways of Tau Fibrillization
,”
Biochim. Biophys. Acta
,
1739
(
2–3
), pp.
167
178
.10.1016/j.bbadis.2004.06.016
21.
Ying
,
Q. C.
, and
Chu
,
B.
,
1987
, “
Overlap Concentration of Macromolecules in Solution
,”
Macromolecules
,
20
(
2
), pp.
362
366
.10.1021/ma00168a023
22.
Jho
,
Y. S.
,
Zhulina
,
E. B.
,
Kim
,
M. W.
, and
Pincus
,
P. A.
,
2010
, “
Monte Carlo Simulations of Tau Proteins: Effect of Phosphorylation
,”
Biophys. J.
,
99
(
8
), pp.
2387
2397
.10.1016/j.bpj.2010.06.056
23.
Del Giudice
,
F.
,
Haward
,
S. J.
, and
Shen
,
A. Q.
,
2017
, “
Relaxation Time of Dilute Polymer Solutions: A Microfluidic Approach
,”
J. Rheol.
,
61
(
2
), pp.
327
337
.10.1122/1.4975933
24.
Larson
,
R. G.
,
1999
,
The Structure and Rheology of Complex Fluids in Topics In Chemical Engineering
, K. E. Gubbins, ed.,
Oxford University Press
, New York.
25.
Hanger
,
D. P.
,
Anderton
,
B. H.
, and
Noble
,
W.
,
2009
, “
Tau Phosphorylation: The Therapeutic Challenge for Neurodegenerative Disease
,”
Trends Mol. Med.
,
15
(
3
), pp.
112
119
.10.1016/j.molmed.2009.01.003
26.
Schliwa
,
M.
,
2002
, “
The Evolving Complexity of Cytoplasmic Structure
,”
Nat. Rev. Mol. Cell Biol.
,
3
(
4
), pp.
291
296
.10.1038/nrm781
27.
Wilson
,
D. M.
, and
Binder
,
L. I.
,
1995
, “
Polymerization of Microtubule-Associated Protein Tau Under Near-Physiological Conditions
,”
J. Biol. Chem.
,
270
(
41
), pp.
24306
24314
.10.1074/jbc.270.41.24306
28.
Liu
,
C.
, and
Zhang
,
Y.
,
2011
, “
Nucleic Acid-Mediated Protein Aggregation and Assembly
,”
Adv. Protein Chem. Struct. Biol.
,
84
, pp.
1
40
.10.1016/B978-0-12-386483-3.00005-7
29.
Blair
,
L. J.
,
Nordhues
,
B. A.
,
Hill
,
S. E.
,
Scaglione
,
K. M.
,
O'Leary
,
J. C.
,
Fontaine
,
S. N.
,
Breydo
,
L.
,
Zhang
,
B.
,
Li
,
P.
,
Wang
,
L.
,
Cotman
,
C.
,
Paulson
,
H. L.
,
Muschol
,
M.
,
Uversky
,
V. N.
,
Klengel
,
T.
,
Binder
,
E. B.
,
Kayed
,
R.
,
Golde
,
T. E.
,
Berchtold
,
N.
, and
Dickey
,
C. A.
,.
2013
, “
Accelerated Neurodegeneration Through Chaperone-Mediated Oligomerization of Tau
,”
J. Clin. Invest.
,
123
(
10
), pp.
4158
4169
.10.1172/JCI69003
You do not currently have access to this content.