Abstract

This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.

References

References
1.
Rouze
,
N. C.
,
Wang
,
M. H.
,
Palmeri
,
M. L.
, and
Nightingale
,
K. R.
,
2013
, “
Finite Element Modeling of Impulsive Excitation and Shear Wave Propagation in an Incompressible, Transversely Isotropic Medium
,”
J. Biomech.
,
46
(
16
), pp.
2761
2768
.10.1016/j.jbiomech.2013.09.008
2.
Royer
,
D.
,
Gennisson
,
J. L.
,
Deffieux
,
T.
, and
Tanter
,
M.
,
2011
, “
On the Elasticity of Transverse Isotropic Soft Tissues
,”
J. Acoust. Soc. Am.
,
129
(
5
), pp.
2757
2760
.10.1121/1.3559681
3.
Gennisson
,
J. L.
,
Catheline
,
S.
,
Chaffai
,
S.
, and
Fink
,
M.
,
2003
, “
Transient Elastography in Anisotropic Medium: Application to the Measurement of Slow and Fast Shear Wave Speeds in Muscles
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
536
541
.10.1121/1.1579008
4.
Aristizabal
,
S.
,
Amador
,
C.
,
Qiang
,
B.
,
Kinnick
,
R. R.
,
Nenadic
,
I. Z.
,
Greenleaf
,
J. F.
, and
Urban
,
M. W.
,
2014
, “
Shear Wave Vibrometry Evaluation in Transverse Isotropic Tissue Mimicking Phantoms and Skeletal Muscle
,”
Phys. Med. Biol.
,
59
(
24
), pp.
7735
7752
.10.1088/0031-9155/59/24/7735
5.
Wang
,
M.
,
Byram
,
B.
,
Palmeri
,
M.
,
Rouze
,
N.
, and
Nightingale
,
K.
,
2013
, “
Imaging Transverse Isotropic Properties of Muscle by Monitoring Acoustic Radiation Force Induced Shear Waves Using a 2-D Matrix Ultrasound Array
,”
IEEE Trans. Med. Imag.
,
32
(
9
), pp.
1671
1684
.10.1109/TMI.2013.2262948
6.
Sinkus
,
R.
,
Tanter
,
M.
,
Catheline
,
S.
,
Lorenzen
,
J.
,
Kuhl
,
C.
,
Sondermann
,
E.
, and
Fink
,
M.
,
2005
, “
Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance-Elastography
,”
Magn. Reson. Med.
,
53
(
2
), pp.
372
387
.10.1002/mrm.20355
7.
Green
,
M. A.
,
Geng
,
G.
,
Qin
,
E.
,
Sinkus
,
R.
,
Gandevia
,
S. C.
, and
Bilston
,
L. E.
,
2013
, “
Measuring Anisotropic Muscle Stiffness Properties Using Elastography
,”
NMR Biomed.
,
26
(
11
), pp.
1387
1394
.10.1002/nbm.2964
8.
Klatt
,
D.
,
Papazoglou
,
S.
,
Braun
,
J.
, and
Sack
,
I.
,
2010
, “
Viscoelasticity-Based MR Elastography of Skeletal Muscle
,”
Phys. Med. Biol.
,
55
(
21
), pp.
6445
6459
.10.1088/0031-9155/55/21/007
9.
Papazoglou
,
S.
,
Rump
,
J.
,
Braun
,
J.
, and
Sack
,
I.
,
2006
, “
Shear Wave Group Velocity Inversion in MR Elastography of Human Skeletal Muscle
,”
Magn. Reson. Med.,
56
(
3
), pp.
489
497
.10.1002/mrm.20993
10.
Qin
,
E. C.
,
Sinkus
,
R.
,
Geng
,
G.
,
Cheng
,
S.
,
Green
,
M.
,
Rae
,
C. D.
, and
Bilston
,
L. E.
,
2013
, “
Combining MR Elastography and Diffusion Tensor Imaging for the Assessment of Anisotropic Mechanical Properties: A Phantom Study
,”
J. Magn. Reson. Imag.
,
37
(
1
), pp.
217
226
.10.1002/jmri.23797
11.
Qin
,
E. C.
,
Jugé
,
L.
,
Lambert
,
S. A.
,
Paradis
,
V.
,
Sinkus
,
R.
, and
Bilston
,
L. E.
,
2014
, “
In Vivo Anisotropic Mechanical Properties of Dystrophic Skeletal Muscles Measured by Anisotropic MR Elastographic Imaging: The Mdx Mouse Model of Muscular Dystrophy
,”
Radiology
,
273
(
3
), pp.
726
735
.10.1148/radiol.14132661
12.
Namani
,
R.
,
Wood
,
M. D.
,
Sakiyama-Elbert
,
S. E.
, and
Bayly
,
P. V.
,
2009
, “
Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography
,”
J. Biomech.
,
42
(
13
), pp.
2047
2053
.10.1016/j.jbiomech.2009.06.007
13.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2013
, “
Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
117
132
.10.1016/j.jmbbm.2013.04.007
14.
Guo
,
J.
,
Hirsch
,
S.
,
Scheel
,
M.
,
Braun
,
J.
, and
Sack
,
I.
,
2016
, “
Three-Parameter Shear Wave Inversion in MR Elastography of Incompressible Transverse Isotropic Media: Application to In Vivo Lower Leg Muscles
,”
Magn. Reson. Med.,
75
(
4
), pp.
1537
1545
. 10.1002/mrm.25740
15.
Romano
,
A.
,
Scheel
,
M.
,
Hirsch
,
S.
,
Braun
,
J.
, and
Sack
,
I.
,
2012
, “
In Vivo Waveguide Elastography of White Matter Tracts in the Human Brain
,”
Magn. Reson. Med.
,
68
(
5
), pp.
1410
1422
.10.1002/mrm.24141
16.
Schmidt
,
J. L.
,
Tweten
,
D. J.
,
Benegal
,
A. N.
,
Walker
,
C. H.
,
Portnoi
,
T. E.
,
Okamoto
,
R. J.
,
Garbow
,
J. R.
, and
Bayly
,
P. V.
,
2016
, “
Magnetic Resonance Elastography of Slow and Fast Shear Waves Illuminates Differences in Shear and Tensile Moduli in Anisotropic Tissue
,”
J. Biomech.
,
49
(
7
), pp.
1042
1049
.10.1016/j.jbiomech.2016.02.018
17.
Tweten
,
D. J.
,
Okamoto
,
R. J.
,
Schmidt
,
J. L.
,
Garbow
,
J. R.
, and
Bayly
,
P. V.
,
2015
, “
Estimation of Material Parameters From Slow and Fast Shear Waves in an Incompressible, Transversely Isotropic Material
,”
J. Biomech.
,
48
(
15
), pp.
4002
4009
.10.1016/j.jbiomech.2015.09.009
18.
Chatelin
,
S.
,
Deck
,
C.
,
Renard
,
F.
,
Kremer
,
S.
,
Heinrich
,
C.
,
Armspach
,
J. P.
, and
Willinger
,
R.
,
2011
, “
Computation of Axonal Elongation in Head Trauma Finite Element Simulation
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1905
1919
.10.1016/j.jmbbm.2011.06.007
19.
Anderson
,
A. T.
,
Van Houten
,
E. E.
,
McGarry
,
M. D.
,
Paulsen
,
K. D.
,
Holtrop
,
J. L.
,
Sutton
,
B. P.
,
Georgiadis
,
J. G.
, and
Johnson
,
C. L.
,
2016
, “
Observation of Direction-Dependent Mechanical Properties in the Human Brain With Multi-Excitation MR Elastography
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
538
546
.10.1016/j.jmbbm.2016.03.005
20.
Dargar
,
S.
,
Rahul
,
Kruger
,
U.
, and
De
,
S.
,
2019
, “
In Vivo Layer-Specific Mechanical Characterization of Porcine Stomach Tissue Using a Customized Ultrasound Elastography System
,”
ASME J. Biomech. Eng.
,
10
(
10
), p.
101004
.10.1115/1.4043259
21.
Konofagou
,
E. E.
,
Maleke
,
C.
, and
Vappou
,
J.
,
2012
, “
Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring
,”
Curr. Med. Imag. Rev.
,
8
(
1
), pp.
16
26
.10.2174/157340512799220616
22.
Liu
,
Y.
,
Liu
,
J.
,
Fite
,
B. Z.
,
Foiret
,
J.
,
Ilovitsh
,
A.
,
Leach
,
J. K.
,
Dumont
,
E.
,
Caskey
,
C. F.
, and
Ferrara
,
K. W.
,
2017
, “
Supersonic Transient Magnetic Resonance Elastography for Quantitative Assessment of Tissue Elasticity
,”
Phys. Med. Biol.
,
62
(
10
), pp.
4083
4106
.10.1088/1361-6560/aa6674
23.
Doherty
,
J. R.
,
Trahey
,
G. E.
,
Nightingale
,
K. R.
, and
Palmeri
,
M. L.
,
2013
, “
Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
60
(
4
), pp.
685
701
.10.1109/TUFFC.2013.2617
24.
Sinkus
,
R.
,
Tanter
,
M.
,
Bercoff
,
J.
,
Siegmann
,
K.
,
Pernot
,
M.
,
Athanasiou
,
A.
, and
Fink
,
M.
,
2008
, “
Potential of MRI and Ultrasound Radiation Force in Elastography: Applications to Diagnosis and Therapy
,”
Proc. IEEE
,
96
(
3
), pp.
490
499
.10.1109/JPROC.2007.913536
25.
Wu
,
T.
,
Felmlee
,
J. P.
,
Greenleaf
,
J. F.
,
Riederer
,
S. J.
, and
Ehman
,
R. L.
,
2000
, “
MR Imaging of Shear Waves Generated by Focused Ultrasound
,”
Magn. Reson. Med.
,
43
(
1
), pp.
111
115
.10.1002/(SICI)1522-2594(200001)43:1<111::AID-MRM13>3.0.CO;2-D
26.
McDannold
,
N.
, and
Maier
,
S. E.
,
2008
, “
Magnetic Resonance Acoustic Radiation Force Imaging
,”
Med. Phys.
,
35
(
8
), pp.
3748
3758
.10.1118/1.2956712
27.
Liu
,
Y.
,
Fite
,
B. Z.
,
Mahakian
,
L. M.
,
Johnson
,
S. M.
,
Larrat
,
B.
,
Dumont
,
E.
, and
Ferrara
,
K. W.
,
2015
, “
Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation With 7T MRI
,”
PLoS One
,
10
(
10
), p.
e0139667
.10.1371/journal.pone.0139667
28.
Chen
,
H.
,
Hou
,
G. Y.
,
Han
,
Y.
,
Payen
,
T.
,
Palermo
,
C. F.
,
Olive
,
K. P.
, and
Konofagou
,
E. E.
,
2015
, “
Harmonic Motion Imaging for Abdominal Tumor Detection and High-Intensity Focused Ultrasound Ablation Monitoring: An In Vivo Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
9
), pp.
1662
1673
.10.1109/TUFFC.2015.007113
29.
Odeen
,
H.
,
de Bever
,
J.
,
Hofstetter
,
L. W.
, and
Parker
,
D. L.
,
2019
, “
Multiple-Point Magnetic Resonance Acoustic Radiation Force Imaging
,”
Magn. Reson. Med.
,
81
(
2
), pp.
1104
1117
.10.1002/mrm.27477
30.
Okamoto
,
R. J.
,
Clayton
,
E. H.
, and
Bayly
,
P. V.
,
2011
, “
Viscoelastic Properties of Soft Gels: Comparison of Magnetic Resonance Elastography and Dynamic Shear Testing in the Shear Wave Regime
,”
Phys. Med. Biol.
,
56
(
19
), pp.
6379
6400
.10.1088/0031-9155/56/19/014
31.
Clayton
,
E. H.
, Garbow, J. R., and
Bayly
,
P. V.
,
2011
, “
Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography
,”
Phys. Med. Biol.,
56
(
8
), pp. 2391–2406.10.1088/0031-9155/56/8/005
32.
Shimony
,
J. S.
,
McKinstry
,
R. C.
,
Akbudak
,
E.
,
Aronovitz
,
J. A.
,
Snyder
,
A. Z.
,
Lori
,
N. F.
,
Cull
,
T. S.
, and
Conturo
,
T. E.
,
1999
, “
Quantitative Diffusion-Tensor Anisotropy Brain MR Imaging: Normative Human Data and Anatomic Analysis
,”
Radiology
,
212
(
3
), pp.
770
784
.10.1148/radiology.212.3.r99au51770
33.
Mori
,
S.
, and
van Zijl
,
P. C.
,
2002
, “
Fiber Tracking: Principles and Strategies—A Technical Review
,”
NMR Biomed.
,
15
(
7–8
), pp.
468
480
.10.1002/nbm.781
34.
Deeken
,
C. R.
,
Thompson
,
D. M.
,
Castile
,
R. M.
, and
Lake
,
S. P.
,
2014
, “
Biaxial Analysis of Synthetic Scaffolds for Hernia Repair Demonstrates Variability in Mechanical Anisotropy, Non-Linearity and Hysteresis
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
6
16
.10.1016/j.jmbbm.2014.06.001
35.
Okamoto
,
R. J.
,
Romano
,
A. J.
,
Johnson
,
C. L.
, and
Bayly
,
P. V.
,
2019
, “
Insights Into Traumatic Brain Injury From MRI of Harmonic Brain Motion
,”
J. Exp. Neurosci.
,
13
.10.1177/1179069519840444
36.
Manduca
,
A.
,
Muthupillai
,
R.
,
Rossman
,
P. J.
,
Greenleaf
,
J. F.
, and
Ehman
,
R. L.
,
1996
, “
Image Processing for Magnetic-Resonance Elastography
,”
SPIE
Paper No. 2710, pp. 616–623.
10.1117/12.237965
37.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium—II: Parameter Estimation
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
340
346
.10.1115/1.2891194
38.
Riek
,
K.
,
Klatt
,
D.
,
Nuzha
,
H.
,
Mueller
,
S.
,
Neumann
,
U.
,
Sack
,
I.
, and
Braun
,
J.
,
2011
, “
Wide-Range Dynamic Magnetic Resonance Elastography
,”
J. Biomech.
,
44
(
7
), pp.
1380
1386
.10.1016/j.jbiomech.2010.12.031
You do not currently have access to this content.