Abstract

Intervertebral disc research has sought to develop a deeper understanding of spine biomechanics, the complex relationship between disc health and back pain, and the mechanisms of spinal injury and repair. To do so, many researchers have focused on characterizing tissue-level properties of the disc, where the roles of tissue subcomponents can be more systematically investigated. Unfortunately, experimental challenges often limit the ability to measure important disc tissue- and subtissue-level behaviors, including fiber–matrix interactions, transient nutrient and electrolyte transport, and damage propagation. Numerous theoretical and numerical modeling frameworks have been introduced to explain, complement, guide, and optimize experimental research efforts. The synergy of experimental and computational work has significantly advanced the field, and these two aspects have continued to develop independently and jointly. Meanwhile, the relationship between experimental and computational work has become increasingly complex and interdependent. This has made it difficult to interpret and compare results between experimental and computational studies, as well as between solely computational studies. This paper seeks to explore issues of model translatability, robustness, and efficient study design, and to propose and motivate potential future directions for experimental, computational, and combined tissue-level investigations of the intervertebral disc.

References

References
1.
Urban
,
J. P.
, and
Roberts
,
S.
,
2003
, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.10.1186/ar629
2.
Adams
,
M. A.
,
2015
, “
Intervertebral Disc Tissues
,”
Mechanical Properties of Aging Soft Tissues
,
Springer
, Basel, Switzerland, pp.
7
35
.
3.
Adams
,
M. A.
, and
Roughley
,
P. J.
,
2006
, “
What is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine
,
31
(
18
), pp.
2151
2161
.10.1097/01.brs.0000231761.73859.2c
4.
Panjabi
,
M.
,
1990
, “
Physical Properties and Functional Biomechanics of the Spine
,”
Clinical Biomechnics of the Spine
, Philadelphia, PA, pp.
1
84
.
5.
Luoma
,
K.
,
Riihimaki
,
H.
,
Luukkonen
,
R.
,
Raininko
,
R.
,
Viikari-Juntura
,
E.
, and
Lamminen
,
A.
,
2000
, “
Low Back Pain in Relation to Lumbar Disc Degeneration
,”
Spine
,
25
(
4
), pp.
487
492
.10.1097/00007632-200002150-00016
6.
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1985
, “
The Effect of Posture on the Lumbar Spine
,”
J. Bone Jt. Surg. Br.
,
67
(
4
), pp.
625
629
.10.1302/0301-620X.67B4.4030863
7.
Berger-Roscher
,
N.
,
Casaroli
,
G.
,
Rasche
,
V.
,
Villa
,
T.
,
Galbusera
,
F.
, and
Wilke
,
H. J.
,
2017
, “
Influence of Complex Loading Conditions on Intervertebral Disc Failure
,”
Spine
,
42
(
2
), pp.
E78
E85
.10.1097/BRS.0000000000001699
8.
Gordon
,
S. J.
,
Yang
,
K. H.
,
Mayer
,
P. J.
,
Mace
,
A. H.
, Jr.
Kish
,
V. L.
, and
Radin
,
E. L.
,
1991
, “
Mechanism of Disc Rupture. A Preliminary Report
,”
Spine
,
16
(
4
), pp.
450
456
.10.1097/00007632-199104000-00011
9.
Tavakoli
,
J.
,
Amin
,
D. B.
,
Freeman
,
B. J. C.
, and
Costi
,
J. J.
,
2018
, “
The Biomechanics of the Inter-Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which is the Weakest Structure?
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1280
1291
.10.1007/s10439-018-2056-0
10.
Veres
,
S. P.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2008
, “
ISSLS Prize Winner: Microstructure and Mechanical Disruption of the Lumbar Disc Annulus—Part II: How the Annulus Fails Under Hydrostatic Pressure
,”
Spine
,
33
(
25
), pp.
2711
2720
.10.1097/BRS.0b013e31817bb906
11.
Veres
,
S. P.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2010
, “
The Influence of Torsion on Disc Herniation When Combined With Flexion
,”
Eur. Spine J.
,
19
(
9
), pp.
1468
1478
.10.1007/s00586-010-1383-0
12.
Veres
,
S. P.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2010
, “
ISSLS Prize Winner: How Loading Rate Influences Disc Failure Mechanics: A Microstructural Assessment of Internal Disruption
,”
Spine
,
35
(
21
), pp.
1897
1908
.10.1097/BRS.0b013e3181d9b69e
13.
Wilder
,
D. G.
,
Pope
,
M. H.
, and
Frymoyer
,
J. W.
,
1988
, “
The Biomechanics of Lumbar Disc Herniation and the Effect of Overload and Instability
,”
J. Spinal Disord.
,
1
(
1
), pp.
16
32
.
14.
O'Connell
,
G. D.
,
Leach
,
J. K.
, and
Klineberg
,
E. O.
,
2015
, “
Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation
,”
Biores. Open Access
,
4
(
1
), pp.
431
445
.10.1089/biores.2015.0034
15.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2007
, “
Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Tissue Engineering
,”
J. Orthop. Res.
,
25
(
8
), pp.
1018
1028
.10.1002/jor.20384
16.
Beadle
,
O. A.
,
1931
, “
The Intervertebral Disc: Observations on Their Normal and Morbid Anatomy in Relation to Certain Spinal Deformities
,”
Med. Res. Counc.-Spec. Rep. Ser.
,
161
, pp.
7
77
.
17.
Göcke
,
C.
,
1932
, “
Das Verhalten der Bandscheiben bei Wirbelverletzungen
,”
Arch. Orthop. Unfall-Chir.
,
31
(
1
), pp.
42
80
.10.1007/BF02562065
18.
Brown
,
T.
,
Hansen
,
R. J.
, and
Yorra
,
A. J.
,
1957
, “
Some Mechanical Tests on the Lumbosacral Spine With Particular Reference to the Intervertebral Discs; a Preliminary Report
,”
J. Bone Jt. Surg. Am.
,
39-A
(
5
), pp.
1135
1164
.10.2106/00004623-195739050-00014
19.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
,
38
(
Suppl. 100
), pp.
101
191
.10.3109/ort.1967.38.suppl-100.01
20.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.10.3109/03008208909103905
21.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
(
23
), pp.
2449
2455
.10.1097/00007632-199912010-00005
22.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.10.1016/S0021-9290(98)00046-3
23.
Lyons
,
G.
,
Eisenstein
,
S. M.
, and
Sweet
,
M. B.
,
1981
, “
Biochemical Changes in Intervertebral Disc Degeneration
,”
Biochim. Biophys. Acta
,
673
(
4
), pp.
443
453
.10.1016/0304-4165(81)90476-1
24.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.10.1097/00007632-199005000-00011
25.
Urban
,
J. P.
, and
McMullin
,
J. F.
,
1985
, “
Swelling Pressure of the Inervertebral Disc: Influence of Proteoglycan and Collagen Contents
,”
Biorheology
,
22
(
2
), pp.
145
157
.10.3233/BIR-1985-22205
26.
Urban
,
J. P. G.
,
1977
, “
Fluid and Solute Transport in the Inter-Vertebral Disc
,” Ph.D. thesis, University of London, London.
27.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
28.
Iatridis
,
J. C.
, and
Ap Gwynn
,
I.
,
2004
, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
,
37
(
8
), pp.
1165
1175
.10.1016/j.jbiomech.2003.12.026
29.
Pezowicz
,
C. A.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2005
, “
Intralamellar Relationships Within the Collagenous Architecture of the Annulus Fibrosus Imaged in Its Fully Hydrated State
,”
J. Anat.
,
207
(
4
), pp.
299
312
.10.1111/j.1469-7580.2005.00467.x
30.
Pezowicz
,
C. A.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2006
, “
The Structural Basis of Interlamellar Cohesion in the Intervertebral Disc Wall
,”
J. Anat.
,
208
(
3
), pp.
317
330
.10.1111/j.1469-7580.2006.00536.x
31.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Latridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
32.
Vergari
,
C.
,
Mansfield
,
J.
,
Meakin
,
J. R.
, and
Winlove
,
P. C.
,
2016
, “
Lamellar and Fibre Bundle Mechanics of the Annulus Fibrosus in Bovine Intervertebral Disc
,”
Acta Biomater.
,
37
, pp.
14
20
.10.1016/j.actbio.2016.04.002
33.
Isaacs
,
J. L.
,
Vresilovic
,
E.
,
Sarkar
,
S.
, and
Marcolongo
,
M.
,
2014
, “
Role of Biomolecules on Annulus Fibrosus Micromechanics: Effect of Enzymatic Digestion on Elastic and Failure Properties
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
75
84
.10.1016/j.jmbbm.2014.08.012
34.
Wagner
,
D. R.
,
Reiser
,
K. M.
, and
Lotz
,
J. C.
,
2006
, “
Glycation Increases Human Annulus Fibrosus Stiffness in Both Experimental Measurements and Theoretical Predictions
,”
J. Biomech.
,
39
(
6
), pp.
1021
1029
.10.1016/j.jbiomech.2005.02.013
35.
Werbner
,
B.
,
Zhou
,
M.
, and
O'Connell
,
G.
,
2017
, “
A Novel Method for Repeatable Failure Testing of Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
139
(
11
), p.
111001
.10.1115/1.4037855
36.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.10.1115/1.1374202
37.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.10.1007/s10237-011-0328-9
38.
Avazmohammadi
,
R.
,
Li
,
D. S.
,
Leahy
,
T.
,
Shih
,
E.
,
Soares
,
J. S.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2018
, “
An Integrated Inverse Model-Experimental Approach to Determine Soft Tissue Three-Dimensional Constitutive Parameters: Application to Post-Infarcted Myocardium
,”
Biomech. Model. Mechanobiol.
,
17
(
1
), pp.
31
53
.10.1007/s10237-017-0943-1
39.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.10.1080/10255840108908005
40.
Shirazi-Adl
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
,
1984
, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression. A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
,
9
(
2
), pp.
120
134
.10.1097/00007632-198403000-00003
41.
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2007
, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
508
516
.10.1002/jor.20324
42.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
1999
, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
,
32
(
10
), pp.
1027
1036
.10.1016/S0021-9290(99)00108-6
43.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.10.1115/1.3212104
44.
Peng
,
X.
,
Guo
,
Z.
, and
Moran
,
B.
,
2006
, “
An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus
,”
ASME J. Appl. Mech.
,
73
(
5
), pp.
815
824
.10.1115/1.2069987
45.
Wagner
,
D. R.
, and
Lotz
,
J. C.
,
2004
, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
,
22
(
4
), pp.
901
909
.10.1016/j.orthres.2003.12.012
46.
Wu
,
H. C.
, and
Yao
,
R. F.
,
1976
, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
,
9
(
1
), pp.
1
7
.10.1016/0021-9290(76)90132-9
47.
Sun
,
D.
,
Gu
,
W.
,
Guo
,
X.
,
Lai
,
W.
, and
Mow
,
V.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano‐Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7
48.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
,
1995
, “
Interlaminar Shear Stresses and Laminae Separation in a Disc. Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine
,
20
(
6
), pp.
689
698
.10.1097/00007632-199503150-00010
49.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.10.1115/1.1933931
50.
Zhou
,
M.
,
Bezci
,
S. E.
, and
O'Connell
,
G.
,
2019
, “
Multiscale Composite Model of Fiber-Reinforced Tissues With Direct Representation of Sub-Tissue Properties
,”
Biomech. Model. Mechanobiol.
, pp. 1–15 (epub).10.1007/s10237-019-01246-x
51.
Gao
,
X.
,
Zhu
,
Q.
, and
Gu
,
W.
,
2016
, “
An Anisotropic Multiphysics Model for Intervertebral Disk
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021011
.10.1115/1.4031793
52.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.10.1007/s00586-012-2308-x
53.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Imanuel
,
O.
,
1996
, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
41
47
.10.1115/1.2795944
54.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.10.1152/ajplegacy.1967.213.6.1532
55.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
56.
Rivlin
,
R.
,
2010
, “
An Introduction to Non-Linear Continuum Mechanics
,”
Non-Linear Continuum Theories in Mechanics and Physics and Their Applications
,
Springer
, Berlin, pp.
151
309
.
57.
Spencer
,
A. J. M.
,
1984
, “
Constitutive Theory for Strongly Anisotropic Solids
,”
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
, New York, pp.
1
32
.
58.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
59.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
60.
Lanir
,
Y.
,
1987
, “
Biorheology and Fluid Flux in Swelling Tissues. I. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
(
2
), pp.
173
187
.10.3233/BIR-1987-24210
61.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021004
.10.1115/1.4023503
62.
Simo
,
J. C.
, and
Ju
,
J.
,
1987
, “
Strain-and Stress-Based Continuum Damage Models—I: Formulation
,”
Int. J. Solids Struct.
,
23
(
7
), pp.
821
840
.10.1016/0020-7683(87)90083-7
63.
Nachemson
,
A.
,
1966
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
,
45
, pp.
107
122
.
64.
Apter
,
J. T.
,
Rabinowitz
,
M.
, and
Cummings
,
D. H.
,
1966
, “
Correlation of Visco-Elastic Properties of Large Arteries With Microscopic Structure
,”
Circ. Res.
,
19
(
1
), pp.
104
121
.10.1161/01.RES.19.1.104
65.
Kenedi
,
R.
,
Gibson
,
T.
, and
Daly
,
C.
,
1965
, “
Bio-Engineering Studies of the Human Skin II
,”
Biomechanics and Related Bio-Engineering Topics
,
Elsevier
, Oxford, UK, pp.
147
158
.
66.
Ridge
,
M. D.
, and
Wright
,
V.
,
1966
, “
Rheological Analysis of Connective Tissue. A Bio-Engineering Analysis of the Skin
,”
Ann. Rheum. Dis.
,
25
(
6
), pp.
509
515
.10.1136/ard.25.6.509
67.
Urban
,
J.
, and
Maroudas
,
A.
,
1979
, “
The Measurement of Fixed Charged Density in the Intervertebral Disc
,”
Biochim. Biophys. Acta
,
586
(
1
), pp.
166
178
.10.1016/0304-4165(79)90415-X
68.
Urban
,
J. P.
, and
Maroudas
,
A.
,
1981
, “
Swelling of the Intervertebral Disc In Vitro
,”
Connect. Tissue Res.
,
9
(
1
), pp.
1
10
.10.3109/03008208109160234
69.
Werbner
,
B.
,
Spack
,
K.
, and
O'Connell
,
G. D.
,
2019
, “
Bovine Annulus Fibrosus Hydration Affects Rate-Dependent Failure Mechanics in Tension
,”
J. Biomech.
,
89
, pp.
34
39
.10.1016/j.jbiomech.2019.04.008
70.
Vernon-Roberts
,
B.
,
Moore
,
R. J.
, and
Fraser
,
R. D.
,
2007
, “
The Natural History of Age-Related Disc Degeneration: The Pathology and Sequelae of Tears
,”
Spine
,
32
(
25
), pp.
2797
2804
.10.1097/BRS.0b013e31815b64d2
71.
Pfirrmann
,
C. W.
,
Metzdorf
,
A.
,
Zanetti
,
M.
,
Hodler
,
J.
, and
Boos
,
N.
,
2001
, “
Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration
,”
Spine
,
26
(
17
), pp.
1873
1878
.10.1097/00007632-200109010-00011
72.
Han
,
W. M.
,
Nerurkar
,
N. L.
,
Smith
,
L. J.
,
Jacobs
,
N. T.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2012
, “
Multi-Scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1610
1621
.10.1007/s10439-012-0525-4
73.
Acaroglu
,
E. R.
,
Latridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
A. M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
24
), pp.
2690
2701
.10.1097/00007632-199512150-00010
74.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.10.1097/00007632-199602150-00009
75.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
,
2004
, “
Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
,
32
(
9
), pp.
1231
1242
.10.1114/B:ABME.0000039357.70905.94
76.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
2000
, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
,
22
(
5
), pp.
349
357
.10.1016/S1350-4533(00)00053-9
77.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2010
, “
An Examination of the Influence of Strain Rate on Subfailure Mechanical Properties of the Annulus Fibrosus
,”
J. Biomech. Eng.
,
132
(
9
), p.
091010
.10.1115/1.4001945
78.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
,
17
(
5
), pp.
732
737
.10.1002/jor.1100170517
79.
Jacobs
,
N. T.
,
Smith
,
L. J.
,
Han
,
W. M.
,
Morelli
,
J.
,
Yoder
,
J. H.
, and
Elliott
,
D. M.
,
2011
, “
Effect of Orientation and Targeted Extracellular Matrix Degradation on the Shear Mechanical Properties of the Annulus Fibrosus
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1611
1619
.10.1016/j.jmbbm.2011.03.016
80.
Guo
,
Z.
,
Shi
,
X.
,
Peng
,
X.
, and
Caner
,
F.
,
2012
, “
Fibre-Matrix Interaction in the Human Annulus Fibrosus
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
193
205
.10.1016/j.jmbbm.2011.05.041
81.
Li
,
D. S.
,
Avazmohammadi
,
R.
,
Merchant
,
S. S.
,
Kawamura
,
T.
,
Hsu
,
E. W.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2019
, “
Insights Into the Passive Mechanical Behavior of Left Ventricular Myocardium Using a Robust Constitutive Model Based on Full 3D Kinematics
,”
J. Mech. Behav. Biomed. Mater.
,
103
.
82.
Schmidt
,
H.
,
Galbusera
,
F.
,
Rohlmann
,
A.
, and
Shirazi-Adl
,
A.
,
2013
, “
What Have we Learned From Finite Element Model Studies of Lumbar Intervertebral Discs in the Past Four Decades?
,”
J. Biomech.
,
46
(
14
), pp.
2342
2355
.10.1016/j.jbiomech.2013.07.014
83.
Spencer
,
A. J. M.
,
1972
, “
Deformations of Fibre-Reinforced Materials
,” Clarendon Press, Oxford, UK, pp.
1
96
.
84.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
85.
Green
,
A. E.
, and
Adkins
,
J. E.
,
1960
,
Large Elastic Deformations and Non-Linear Continuum Mechanics
,
Clarendon Press
, Oxford, UK.
86.
Hart-Smith
,
L.
, and
Crisp
,
J.
,
1967
, “
Large Elastic Deformations of Thin Rubber Membranes
,”
Int. J. Eng. Sci.
,
5
(
1
), pp.
1
24
.10.1016/0020-7225(67)90051-1
87.
Saunders
,
D.
,
1965
, “
Large Deformations in Amorphous Polymers
,”
Biomechanics and Related Bio-Engineering Topics
,
Elsevier
, Oxford, UK, pp.
301
319
.
88.
Cortes
,
D. H.
,
Jacobs
,
N. T.
,
DeLucca
,
J. F.
, and
Elliott
,
D. M.
,
2014
, “
Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
2088
2094
.10.1016/j.jbiomech.2013.12.021
89.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Peloquin
,
J. M.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Validation and Application of an Intervertebral Disc Finite Element Model Utilizing Independently Constructed Tissue-Level Constitutive Formulations That Are Nonlinear, Anisotropic, and Time-Dependent
,”
J. Biomech.
,
47
(
11
), pp.
2540
2546
.10.1016/j.jbiomech.2014.06.008
90.
Nerurkar
,
N. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2008
, “
ISSLS Prize Winner: Integrating Theoretical and Experimental Methods for Functional Tissue Engineering of the Annulus Fibrosus
,”
Spine
,
33
(
25
), pp.
2691
2701
.10.1097/BRS.0b013e31818e61f7
91.
Nerurkar
,
N. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2011
, “
Modeling Interlamellar Interactions in Angle-Ply Biologic Laminates for Annulus Fibrosus Tissue Engineering
,”
Biomech. Model. Mechanobiol.
,
10
(
6
), pp.
973
984
.10.1007/s10237-011-0288-0
92.
Yin
,
L.
, and
Elliott
,
D. M.
,
2005
, “
A Homogenization Model of the Annulus Fibrosus
,”
J. Biomech.
,
38
(
8
), pp.
1674
1684
.10.1016/j.jbiomech.2004.07.017
93.
Eskandari
,
M.
,
Nordgren
,
T. M.
, and
O'Connell
,
G. D.
,
2019
, “
Mechanics of Pulmonary Airways: Linking Structure to Function Through Constitutive Modeling, Biochemistry, and Histology
,”
Acta Biomater.
,
97
, pp.
513
523
.10.1016/j.actbio.2019.07.020
94.
Holm
,
S.
, and
Nachemson
,
A.
,
1983
, “
Variations in the Nutrition of the Canine Intervertebral Disc Induced by Motion
,”
Spine
,
8
(
8
), pp.
866
874
.10.1097/00007632-198311000-00009
95.
Urban
,
J. P.
, and
Holm
,
S. H.
,
1986
, “
Intervertebral Disc Nutrition as Related to Spinal Movements and Fusion
,”
Tissue Nutrition and Viability
,
Springer
, New York, pp.
101
119
.
96.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage—I: Theoretical Analysis
,”
J. Biomech.
,
20
(
7
), pp.
703
714
.10.1016/0021-9290(87)90036-4
97.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.10.1016/0021-9290(84)90031-9
98.
Ehlers
,
W.
,
2002
, “
Foundations of Multiphasic and Porous Materials
,”
Porous Media
,
Springer
, Berlin, pp.
3
86
.
99.
Frijns
,
A. J.
,
Huyghe
,
J. M.
,
Kaasschieter
,
E. F.
, and
Wijlaars
,
M. W.
,
2003
, “
Numerical Simulation of Deformations and Electrical Potentials in a Cartilage Substitute
,”
Biorheology
,
40
(
1–3
), pp.
123
131
.
100.
Frijns
,
A. J. H.
,
Huyghe
,
J.
, and
Janssen
,
J. D.
,
1997
, “
A Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
,
35
(
15
), pp.
1419
1429
.10.1016/S0020-7225(97)00047-5
101.
Huyghe
,
J. M.
,
Houben
,
G. B.
,
Drost
,
M. R.
, and
van Donkelaar
,
C. C.
,
2003
, “
An Ionised/Non-Ionised Dual Porosity Model of Intervertebral Disc Tissue
,”
Biomech. Model. Mechanobiol.
,
2
(
1
), pp.
3
19
.10.1007/s10237-002-0023-y
102.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
,
2003
, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
12
24
.10.1115/1.1537190
103.
Kaasschieter
,
E. F.
,
Frijns
,
A. J. H.
, and
Huyghe
,
J.
,
2003
, “
Mixed Finite Element Modelling of Cartilaginous Tissues
,”
Math. Comput. Simul.
,
61
(
3–6
), pp.
549
560
.10.1016/S0378-4754(02)00105-2
104.
Laible
,
J. P.
,
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
,
1993
, “
A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc
,”
Spine
,
18
(
5
), pp.
659
670
.10.1097/00007632-199304000-00019
105.
Van Loon
,
R.
,
Huyghe
,
J.
,
Wijlaars
,
M.
, and
Baaijens
,
F.
,
2003
, “
3D FE Implementation of an Incompressible Quadriphasic Mixture Model
,”
Int. J. Numer. Methods Eng.
,
57
(
9
), pp.
1243
1258
.10.1002/nme.723
106.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
,
2005
, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
158
165
.10.1115/1.1835361
107.
Goel
,
V. K.
,
Kim
,
Y. E.
,
Lim
,
T. H.
, and
Weinstein
,
J. N.
,
1988
, “
An Analytical Investigation of the Mechanics of Spinal Instrumentation
,”
Spine
,
13
(
9
), pp.
1003
1011
.10.1097/00007632-198809000-00007
108.
Shirazi-Adl
,
A.
,
1989
, “
On the Fibre Composite Material Models of Disc Annulus–Comparison of Predicted Stresses
,”
J. Biomech.
,
22
(
4
), pp.
357
365
.10.1016/0021-9290(89)90050-X
109.
Ueno
,
K.
, and
Liu
,
Y. K.
,
1987
, “
A Three-Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
200
209
.10.1115/1.3138670
110.
Chaboche
,
J.-L.
,
1981
, “
Continuous Damage Mechanics—A Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des.
,
64
(
2
), pp.
233
247
.10.1016/0029-5493(81)90007-8
111.
Kachanov
,
L.
,
1958
, “
Time of the Rupture Process Under Creep Conditions, Izy Akad
,”
Nank S.S.R. Otd Tech Nauk
,
8
, pp.
26
31
.
112.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,” J. Eng. Mater. Technol., 107, pp.
83
89
.
113.
Rabotnov
,
Y. N.
,
1980
, “
Elements of Hereditary Solid Mechanics
,” Mir Publishers, Moscow, Russia.
114.
Mengoni
,
M.
,
Jones
,
A. C.
, and
Wilcox
,
R. K.
,
2016
, “
Modelling the Failure Precursor Mechanism of Lamellar Fibrous Tissues, Example of the Annulus Fibrosus
,”
J. Mech. Behav. Biomed. Mater.
,
63
, pp.
265
272
.10.1016/j.jmbbm.2016.06.030
115.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusseaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
116.
Ganzenmüller
,
G. C.
,
2015
, “
An Hourglass Control Algorithm for Lagrangian Smooth Particle Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
87
106
.10.1016/j.cma.2014.12.005
117.
Rausch
,
M. K.
,
Karniadakis
,
G. E.
, and
Humphrey
,
J. D.
,
2017
, “
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
249
261
.10.1007/s10237-016-0814-1
118.
Xiang Gu
,
G.
,
Su
,
I.
,
Sharma
,
S.
,
Voros
,
J. L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Three-Dimensional-Printing of Bio-Inspired Composites
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021006
.10.1115/1.4032423
119.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech.
,
22
(
4
), pp.
377
384
.10.1016/j.clinbiomech.2006.11.008
120.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech.
,
21
(
4
), pp.
337
344
.10.1016/j.clinbiomech.2005.12.001
121.
Spilker
,
R. L.
,
Jakobs
,
D. M.
, and
Schultz
,
A. B.
,
1986
, “
Material Constants for a Finite Element Model of the Intervertebral Disk With a Fiber Composite Annulus
,”
ASME J. Biomech. Eng.
,
108
(
1
), pp.
1
11
.10.1115/1.3138575
122.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
,
2004
, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus
,”
Technol. Health Care
,
12
(
4
), pp.
333
342
.10.3233/THC-2004-12405
123.
Adams
,
M. A.
,
Dolan
,
P.
, and
Hutton
,
W. C.
,
1987
, “
Diurnal Variations in the Stresses on the Lumbar Spine
,”
Spine
,
12
(
2
), pp.
130
137
.10.1097/00007632-198703000-00008
124.
Adams
,
M. A.
,
Dolan
,
P.
,
Hutton
,
W. C.
, and
Porter
,
R. W.
,
1990
, “
Diurnal Changes in Spinal Mechanics and Their Clinical Significance
,”
J. Bone Jt. Surg. Br.
,
72
(
2
), pp.
266
270
.10.1302/0301-620X.72B2.2138156
125.
Belavy
,
D. L.
,
Adams
,
M.
,
Brisby
,
H.
,
Cagnie
,
B.
,
Danneels
,
L.
,
Fairbank
,
J.
,
Hargens
,
A. R.
,
Judex
,
S.
,
Scheuring
,
R. A.
,
Sovelius
,
R.
,
Urban
,
J.
,
van Dieen
,
J. H.
, and
Wilke
,
H. J.
,
2016
, “
Disc Herniations in Astronauts: What Causes Them, and What Does It Tell us About Herniation on Earth?
,”
Eur. Spine J.
,
25
(
1
), pp.
144
154
.10.1007/s00586-015-3917-y
126.
Bezci
,
S. E.
,
Nandy
,
A.
, and
O'Connell
,
G. D.
,
2015
, “
Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101007
.10.1115/1.4031416
You do not currently have access to this content.