Abstract

Millions of people have reduced hand function; this loss of function can be due to injury, disease, or aging. Loss of hand function is identified as reduced motion abilities in the fingers or a decrease in the ability of the fingers to generate force. Unfortunately, there are limited data available regarding each finger's ability to produce force and how those force characteristics vary with changes in finger posture. To relate motion and force abilities of the fingers, first, an approach to measure and map them together is needed. The goal of this work was to develop and demonstrate a method to quantify the force abilities of the fingers and map these forces to the kinematic space associated with each finger. Using motion capture and multiaxis load cells, finger forces were quantified at different positions over their ranges of motion. These two sets of data were then converted to the same coordinate space and mapped together. Further, the data were normalized for the index finger and mapped as a population space model. The ability to quantify motion and force data for each finger and map them together will provide an improved understanding of the effects of treatments and rehabilitation, identifying functional loss due to injury or disease, and device design.

References

References
1.
Bullock
,
I. M.
,
Borras
,
J.
, and
Dollar
,
A. M.
,
2012
, “
Assessing Assumptions in Kinematic Hand Models: A Review
,”
Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
139
146
.10.1109/BioRob.2012.6290879
2.
Blana
,
D.
,
Chadwick
,
E. K.
,
van den Bogert
,
A. J.
, and
Murray
,
W. M.
,
2017
, “
Real-Time Simulation of Hand Motion for Prosthesis Control
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
5
), pp.
540
549
.10.1080/10255842.2016.1255943
3.
Cook
,
J. R.
,
Baker
,
N. A.
,
Cham
,
R.
,
Hale
,
E.
, and
Redfern
,
M. S.
,
2007
, “
Measurements of Wrist and Finger Postures: A Comparison of Goniometric and Motion Capture Techniques
,”
J. Appl. Biomech.
,
23
(
1
), pp.
70
78
.10.1123/jab.23.1.70
4.
Bashardoust Tajali
,
S.
,
MacDermid
,
J. C.
,
Grewal
,
R.
, and
Young
,
C.
,
2016
, “
Reliability and Validity of Electro-Goniometric Range of Motion Measurements in Patients With Hand and Wrist Limitations
,”
Open Orthop. J.
,
10
(
1
), pp.
190
205
.10.2174/1874325001610010190
5.
McVeigh
,
K. H.
,
Murray
,
P. M.
,
Heckman
,
M. G.
,
Rawal
,
B.
, and
Peterson
,
J. J.
,
2016
, “
Accuracy and Validity of Goniometer and Visual Assessments of Angular Joint Positions of the Hand and Wrist
,”
J. Hand Surg. Am.
,
41
(
4
), pp.
e21
e35
.10.1016/j.jhsa.2015.12.014
6.
Bae
,
S.
, and
Armstrong
,
T. J.
,
2011
, “
A Finger Motion Model for Reach and Grasp
,”
Int. J. Ind. Ergon.
,
41
(
1
), pp.
79
89
.10.1016/j.ergon.2010.11.001
7.
Nataraj
,
R.
, and
Li
,
Z.-M.
,
2013
, “
Robust Identification of Three-Dimensional Thumb and Index Finger Kinematics With a Minimal Set of Markers
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091002
.10.1115/1.4024753
8.
Bohannon
,
R. W.
,
Peolsson
,
A.
,
Massy-Westropp
,
N.
,
Desrosiers
,
J.
, and
Bear-Lehman
,
J.
,
2006
, “
Reference Values for Adult Grip Strength Measured With a Jamar Dynamometer: A Descriptive Meta-Analysis
,”
Physiotherapy
,
92
(
1
), pp.
11
15
.10.1016/j.physio.2005.05.003
9.
Smaby
,
N.
,
Elise Johanson
,
M.
,
Baker
,
B.
,
Ellen Kenney
,
D.
,
Marie Murray
,
W.
, and
Rod Hentz
,
V.
,
2004
, “
Identification of Key Pinch Forces Required to Complete Functional Tasks
,”
JRRD
,
41
(
2
), pp.
215
224
.10.1682/JRRD.2004.02.0215
10.
Leitkam
,
S. T.
,
Bush
,
T. R.
, and
Bix
,
L.
,
2014
, “
Determining Functional Finger Capabilities of Healthy Adults: Comparing Experimental Data to a Biomechanical Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021022
.10.1115/1.4026255
11.
Leitkam
,
S. T.
,
Bix
,
L.
,
de la Fuente
,
J.
, and
Reid Bush
,
T.
,
2015
, “
Mapping Kinematic Functional Abilities of the Hand to Three Dimensional Shapes for Inclusive Design
,”
ASME J. Biomech. Eng.
,
48
(
11
), pp.
2903
2910
.10.1016/j.jbiomech.2015.04.025
12.
Leitkam
,
S. T.
, and
Reid Bush
,
T.
,
2015
, “
Comparison Between Healthy and Reduced Hand Function Using Ranges of Motion and a Weighted Fingertip Space Model
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041003
.10.1115/1.4029215
13.
Nicolay
,
C. W.
, and
Walker
,
A. L.
,
2005
, “
Grip Strength and Endurance: Influences of Anthropometric Variation, Hand Dominance, and Gender
,”
Int. J. Ind. Ergon.
,
35
(
7
), pp.
605
618
.10.1016/j.ergon.2005.01.007
14.
Freund
,
J.
,
Toivonen
,
R.
, and
Takala
,
E.-P.
,
2002
, “
Grip Forces of the Fingertips
,”
Clin. Biomech.
,
17
(
7
), pp.
515
520
.10.1016/S0268-0033(02)00043-8
15.
Venkadesan
,
M.
, and
Valero-Cuevas
,
F. J.
,
2008
, “
Neural Control of Motion-to-Force Transitions With the Fingertip
,”
J. Neurosci.
,
28
(
6
), pp.
1366
1373
.10.1523/JNEUROSCI.4993-07.2008
16.
Valero-Cuevas
,
F. J.
,
2005
, “
An Integrative Approach to the Biomechanical Function and Neuromuscular Control of the Fingers
,”
J. Biomech.
,
38
(
4
), pp.
673
684
.10.1016/j.jbiomech.2004.04.006
17.
Valero-Cuevas
,
F. J.
,
Zajac
,
F. E.
, and
Burgar
,
C. G.
,
1998
, “
Large Index-Fingertip Forces are Produced by Subject-Independent Patterns of Muscle Excitation
,”
J. Biomech.
,
31
(
8
), pp.
693
703
.10.1016/S0021-9290(98)00082-7
18.
Cruz
,
E. G.
,
Waldinger
,
H. C.
, and
Kamper
,
D. G.
,
2005
, “
Kinetic and Kinematic Workspaces of the Index Finger Following Stroke
,”
Brain
,
128
(
5
), pp.
1112
1121
.10.1093/brain/awh432
19.
Kamper
,
D. G.
,
Fischer
,
H. C.
, and
Cruz
,
E. G.
,
2006
, “
Impact of Finger Posture on Mapping From Muscle Activation to Joint Torque
,”
Clin. Biomech.
,
21
(
4
), pp.
361
369
.10.1016/j.clinbiomech.2005.11.005
20.
Seo
,
N. J.
,
Rymer
,
W. Z.
, and
Kamper
,
D. G.
,
2010
, “
Altered Digit Force Direction During Pinch Grip Following Stroke
,”
Exp. Brain Res.
,
202
(
4
), pp.
891
901
.10.1007/s00221-010-2193-7
21.
Fok
,
K. S.
, and
Chou
,
S. M.
,
2010
, “
Development of a Finger Biomechanical Model and Its Considerations
,”
J. Biomech.
,
43
(
4
), pp.
701
713
.10.1016/j.jbiomech.2009.10.020
22.
Sancho-Bru
,
J. L.
,
Pérez-González
,
A.
,
Vergara-Monedero
,
M.
, and
Giurintano
,
D.
,
2001
, “
A 3-D Dynamic Model of Human Finger for Studying Free Movements
,”
J. Biomech.
,
34
(
11
), pp.
1491
1500
.10.1016/S0021-9290(01)00106-3
23.
Wohlman
,
S. J.
, and
Murray
,
W. M.
,
2013
, “
Bridging the Gap Between Cadaveric and In Vivo Experiments: A Biomechanical Model Evaluating Thumb-Tip Endpoint Forces
,”
J. Biomech.
,
46
(
5
), pp.
1014
1020
.10.1016/j.jbiomech.2012.10.044
24.
An
,
K. N.
,
Chao
,
E. Y.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1985
, “
Forces in the Normal and Abnormal Hand
,”
J. Orthop. Res.
,
3
(
2
), pp.
202
211
.10.1002/jor.1100030210
25.
An
,
K. N.
,
Chao
,
E. Y.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1979
, “
Normative Model of Human Hand for Biomechanical Analysis
,”
J. Biomech.
,
12
(
10
), pp.
775
788
.10.1016/0021-9290(79)90163-5
You do not currently have access to this content.