Abstract

Virtual fractional flow reserve (vFFR) is an emerging technology employing patient-specific computational fluid dynamics (CFD) simulations to infer the hemodynamic significance of a coronary stenosis. Patient-specific boundary conditions are an important aspect of this approach and while most efforts make use of lumped parameter models to capture key phenomena, they lack the ability to specify the associated parameters on a patient-specific basis. When applying vFFR in a catheter laboratory setting using X-ray angiograms as the basis for creating the simulations, there is some indirect functional information available through the observation of the radio-opaque contrast agent motion. In this work, we present a novel method for tuning the lumped parameter arterial resistances (commonly incorporated in such simulations), based on simulating the physics of the contrast motion and comparing the observed and simulated arrival times of the contrast front at key points within a coronary tree. We present proof of principle results on a synthetically generated coronary tree comprised of multiple segments, demonstrating that the method can successfully optimize the arterial resistances to reconstruct the underlying velocity and pressure fields, providing a potential new means to improve the patient specificity of simulation-based technologies in this area.

References

References
1.
May
,
A. N.
,
Kull
,
A.
,
Gunalingam
,
B.
,
Francis
,
J. L.
, and
Lau
,
G. T.
,
2016
, “
The Uptake of Coronary Fractional Flow Reserve in Australia in the Past Decade
,”
Med. J. Aust.
,
205
(
3
), p.
127
.10.5694/mja15.01225
2.
Murphy
,
J. C.
,
Hansen
,
P. S.
,
Bhindi
,
R.
,
Figtree
,
G. A.
,
Nelson
,
G. I. C.
, and
Ward
,
M. R.
,
2014
, “
Cost Benefit for Assessment of Intermediate Coronary Stenosis With Fractional Flow Reserve in Public and Private Sectors in Australia
,”
Heart Lung Circ.
,
23
(
9
), pp.
807
810
.10.1016/j.hlc.2014.03.027
3.
De Bruyne
,
B.
,
Pijls
,
N. H.
,
Kalesan
,
B.
,
Barbato
,
E.
,
Tonino
,
P. A.
,
Piroth
,
Z.
,
Jagic
,
N.
,
Möbius-Winkler
,
S.
,
Rioufol
,
G.
,
Witt
,
N.
,
Kala
,
P.
,
MacCarthy
,
P.
,
Engström
,
T.
,
Oldroyd
,
K. G.
,
Mavromatis
,
K.
,
Manoharan
,
G.
,
Verlee
,
P.
,
Frobert
,
O.
,
Curzen
,
N.
,
Johnson
,
J. B.
,
Jüni
,
P.
, and
Fearon
,
W. F.
,
2012
, “
Fractional Flow Reserve–Guided PCI Versus Medical Therapy in Stable Coronary Disease
,”
New Engl. J. Med.
,
367
(
11
), pp.
991
1001
.10.1056/NEJMoa1205361
4.
Pijls
,
N. H.
, and
Sels
,
J.-W. E.
,
2012
, “
Functional Measurement of Coronary Stenosis
,”
J. Am. Coll. Cardiol.
,
59
(
12
), pp.
1045
1057
.10.1016/j.jacc.2011.09.077
5.
Morris
,
P. D.
,
van de Vosse
,
F. N.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2015
, “
Virtual (Computed) Fractional Flow Reserve: Current Challenges and Limitations
,”
JACC: Cardiovasc. Interventions
,
8
, pp.
1009
1017
.10.1016/j.jcin.2015.04.006
6.
Morris
,
P. D.
,
Ryan
,
D.
,
Morton
,
A. C.
,
Lycett
,
R.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2013
, “
Virtual Fractional Flow Reserve From Coronary Angiography: Modeling the Significance of Coronary Lesions: Results From the Virtu-1 (Virtual Fractional Flow Reserve From Coronary Angiography) Study
,”
JACC: Cardiovasc. Interventions
,
6
, pp.
149
157
.10.1016/j.jcin.2012.08.024
7.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.10.1016/j.jacc.2012.11.083
8.
Tu
,
S.
,
Barbato
,
E.
,
Köszegi
,
Z.
,
Yang
,
J.
,
Sun
,
Z.
,
Holm
,
N. R.
,
Tar
,
B.
,
Li
,
Y.
,
Rusinaru
,
D.
,
Wijns
,
W.
, and
Reiber
,
J. H. C.
,
2014
, “
Fractional Flow Reserve Calculation From 3-Dimensional Quantitative Coronary Angiography and TIMI Frame Count: A Fast Computer Model to Quantify the Functional Significance of Moderately Obstructed Coronary Arteries
,”
JACC Cardiovasc. Interventions
,
7
(
7
), pp.
768
777
.10.1016/j.jcin.2014.03.004
9.
Ballarin
,
F.
,
Faggiano
,
E.
,
Ippolito
,
S.
,
Manzoni
,
A.
,
Quarteroni
,
A.
,
Rozza
,
G.
, and
Scrofani
,
R.
,
2016
, “
Fast Simulations of Patient-Specific Haemodynamics of Coronary Artery Bypass Grafts Based on a Pod–Galerkin Method and a Vascular Shape Parameterization
,”
J. Comput. Phys.
,
315
, pp.
609
628
.10.1016/j.jcp.2016.03.065
10.
Coenen
,
A.
,
Lubbers
,
M. M.
,
Kurata
,
A.
,
Kono
,
A.
,
Dedic
,
A.
,
Chelu
,
R. G.
,
Dijkshoorn
,
M. L.
,
Gijsen
,
F. J.
,
Ouhlous
,
M.
,
van Geuns
,
R.-J. M.
, and
Nieman
,
K.
,
2015
, “
Fractional Flow Reserve Computed From Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-Operated Computational Fluid Dynamics Algorithm
,”
Radiology
,
274
(
3
), pp.
674
683
.10.1148/radiol.14140992
11.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
LaDisa
,
J. F.
,
Jansen
,
K. E.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2009
, “
On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2153
2169
.10.1007/s10439-009-9760-8
12.
Simaan
,
M. A.
,
2009
,
Rotary Heart Assist Devices
,
Springer
,
Berlin
, pp.
1409
1422
.
13.
Sankaran
,
S.
,
Esmaily Moghadam
,
M.
,
Kahn
,
A. M.
,
Tseng
,
E. E.
,
Guccione
,
J. M.
, and
Marsden
,
A. L.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.10.1007/s10439-012-0579-3
14.
Westerhof
,
N.
,
Lankhaar
,
J.-W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
, pp.
131
141
.10.1007/s11517-008-0359-2
15.
Durant
,
J.
,
Waechter
,
I.
,
Hermans
,
R.
,
Weese
,
J.
, and
Aach
,
T.
,
2008
, “
Toward Quantitative Virtual Angiography: Evaluation With In Vitro Studies
,”
Fifth IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, Paris, France, May 14–17, pp.
632
635
.
16.
Ford
,
M. D.
,
Stuhne
,
G. R.
,
Nikolov
,
H. N.
,
Habets
,
D. F.
,
Lownie
,
S. P.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Virtual Angiography for Visualization and Validation of Computational Models of Aneurysm Hemodynamics
,”
IEEE Trans. Med. Imaging
,
24
(
12
), pp.
1586
1592
.10.1109/TMI.2005.859204
17.
Boegel
,
M.
,
Gehrisch
,
S.
,
Redel
,
T.
,
Rohkohl
,
C.
,
Hoelter
,
P.
,
Doerfler
,
A.
,
Maier
,
A.
, and
Kowarschik
,
M.
,
2016
, “
Patient-Individualized Boundary Conditions for CFD Simulations Using Time-Resolved 3D Angiography
,”
Int. J. Comput. Assisted Radiol. Surg.
,
11
(
6
), pp.
1061
1069
.10.1007/s11548-016-1367-6
18.
Endres
,
J.
,
Redel
,
T.
,
Kowarschik
,
M.
,
Hutter
,
J.
,
Hornegger
,
J.
, and
Doerfler
,
A.
,
2012
, “
Virtual Angiography Using CFD Simulations Based on Patient-Specific Parameter Optimization
,”
Ninth IEEE International Symposium on Biomedical Imaging (ISBI)
, Barcelona, Spain, May 2–5, pp.
1200
1203
.
19.
Yang
,
J.
,
Cong
,
W.
,
Chen
,
Y.
,
Fan
,
J.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2014
, “
External Force Back-Projective Composition and Globally Deformable Optimization for 3-D Coronary Artery Reconstruction
,”
Phys. Med. Biol.
,
59
(
4
), pp.
975
1003
.10.1088/0031-9155/59/4/975
20.
Zheng
,
S.
, and
Qi
,
Y.
,
2011
, “
Motion Estimation of 3D Coronary Vessel Skeletons From X-Ray Angiographic Sequences
,”
Comput. Med. Imaging Graph
,
35
(
5
), pp.
353
364
.10.1016/j.compmedimag.2010.12.002
21.
OSMS Corporation
, “OSMS Corporation,” Los Angeles, CA, accessed July 3, 2019, http://www.vascularmodel.com
22.
Schroeder
,
W.
,
Lorensen
,
B.
,
Ken
,
M.
, and
Kitware
,
I.
,
2006
,
The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics
, 4th ed., Kitware,
Clifton Park, NY
.
23.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
112
.10.1007/s11517-008-0420-1
24.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
25.
Mazzeo
,
M.
, and
Coveney
,
P.
,
2008
, “
HemeLB: A High Performance Parallel Lattice-Boltzmann Code for Large Scale Fluid Flow in Complex Geometries
,”
Comput. Phys. Commun.
,
178
(
12
), pp.
894
914
.10.1016/j.cpc.2008.02.013
26.
Alena Jonasova
,
J. V.
, and
Bublik
,
O.
,
2015
, “
Blood Flow Simulations in Patient-Specific Aorto-Coronary Bypass Models: The Role of Boundary Conditions
,”
Fourth International Conference on Computational Bioengineering
(
ICCB
), Barcelona, Spain, May 14–16. http://congress.cimne.com/ICCB2015/frontal/papers.asp
27.
Eslami
,
P.
,
Seo
,
J.-H.
,
Rahsepar
,
A. A.
,
George
,
R.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2015
, “
Computational Study of Computed Tomography Contrast Gradients in Models of Stenosed Coronary Arteries
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
091002
.10.1115/1.4030891
28.
Kim
,
T.
,
Cheer
,
A.
, and
Dwyer
,
H.
,
2004
, “
A Simulated Dye Method for Flow Visualization With a Computational Model for Blood Flow
,”
J. Biomech.
,
37
(
8
), pp.
1125
1136
.10.1016/j.jbiomech.2003.12.028
29.
Zhou
,
Y.
,
Kassab
,
G. S.
, and
Molloi
,
S.
,
1999
, “
On the Design of the Coronary Arterial Tree: A Generalization of Murray's Law
,”
Phys. Med. Biol.
,
44
(
12
), p.
2929
.10.1088/0031-9155/44/12/306
30.
Götberg
,
M.
,
Christiansen
,
E. H.
,
Gudmundsdottir
,
I. J.
,
Sandhall
,
L.
,
Danielewicz
,
M.
,
Jakobsen
,
L.
,
Olsson
,
S.-E.
,
Öhagen
,
P.
,
Olsson
,
H.
,
Omerovic
,
E.
,
Calais
,
F.
,
Lindroos
,
P.
,
Maeng
,
M.
,
Tödt
,
T.
,
Venetsanos
,
D.
,
James
,
S. K.
,
Kåregren
,
A.
,
Nilsson
,
M.
,
Carlsson
,
J.
,
Hauer
,
D.
,
Jensen
,
J.
,
Karlsson
,
A.-C.
,
Panayi
,
G.
,
Erlinge
,
D.
, and
Fröbert
,
O.
,
2017
, “
Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve to Guide PCI
,”
New Engl. J. Med.
,
376
(
19
), pp.
1813
1823
.10.1056/NEJMoa1616540
You do not currently have access to this content.