Abstract

Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure. The aim of this study was to explore the spatiotemporal variation of the microscopic elastic properties of newly formed bone tissue close to an implant. Eight coin-shaped Ti6Al4V implants were inserted into rabbit tibiae for 7 and 13 weeks using an in vivo model allowing the distinction between mature and newly formed bone in a standardized configuration. Nanoindentation and micro-Brillouin scattering measurements were carried out in similar locations to measure the indentation modulus and the wave velocity, from which relative variations of bone mass density were extracted. The indentation modulus, the wave velocity and mass density were found to be higher (1) in newly formed bone tissue located close to the implant surface, compared to mature cortical bone tissue, and (2) after longer healing time, consistently with an increased mineralization. Within the bone chamber, the spatial distribution of elastic properties was more heterogeneous for shorter healing durations. After 7 weeks of healing, bone tissue in the bone chamber close to the implant surface was 12.3% denser than bone tissue further away. Bone tissue close to the chamber edge was 16.8% denser than in its center. These results suggest a bone spreading pathway along tissue maturation, which is confirmed by histology and consistent with contact osteogenesis phenomena.

References

1.
Huja
,
S. S.
,
Katona
,
T. R.
,
Burr
,
D. B.
,
Garetto
,
L. P.
, and
Roberts
,
W. E.
,
1999
, “
Microdamage Adjacent to Endosseous Implants
,”
Bone
,
25
(
2
), pp.
217
222
.10.1016/S8756-3282(99)00151-9
2.
Haiat
,
G.
,
Wang
,
H. L.
, and
Brunski
,
J.
,
2014
, “
Effects of Biomechanical Properties of the Bone-Implant Interface on Dental Implant Stability: From in Silico Approaches to the Patient's Mouth
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
187
213
.10.1146/annurev-bioeng-071813-104854
3.
Luo
,
G.
,
Sadegh
,
A. M.
,
Alexander
,
H.
,
Jaffe
,
W.
,
Scott
,
D.
, and
Cowin
,
S. C.
,
1999
, “
The Effect of Surface Roughness on the Stress Adaptation of Trabecular Architecture Around a Cylindrical Implant
,”
J. Biomech.
,
32
(
3
), pp.
275
284
.10.1016/S0021-9290(98)00172-9
4.
Mathieu
,
V.
,
Vayron
,
R.
,
Richard
,
G.
,
Lambert
,
G.
,
Naili
,
S.
,
Meningaud
,
J. P.
, and
Haiat
,
G.
,
2014
, “
Biomechanical Determinants of the Stability of Dental Implants: Influence of the Bone-Implant Interface Properties
,”
J. Biomech.
,
47
(
1
), pp.
3
13
.10.1016/j.jbiomech.2013.09.021
5.
Gao
,
X.
,
Fraulob
,
M.
, and
Haiat
,
G.
,
2019
, “
Biomechanical Behaviours of the Bone-Implant Interface: A Review
,”
J. R. Soc. Interface
,
16
(
156
), p.
20190259
.10.1098/rsif.2019.0259
6.
Shah
,
F. A.
,
Snis
,
A.
,
Matic
,
A.
,
Thomsen
,
P.
, and
Palmquist
,
A.
,
2016
, “
3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface
,”
Acta Biomater.
,
30
, pp.
357
367
.10.1016/j.actbio.2015.11.013
7.
Tornquist
,
E.
,
Isaksson
,
H.
, and
Turunen
,
M. J.
,
2020
, “
Mineralization of Cortical Bone During Maturation and Growth in Rabbits
,”
J. Bone Miner. Metab.
,
38
(
3
), pp.
289
298
.10.1007/s00774-019-01068-y
8.
Yoon
,
H. I.
,
Jeon
,
M. J.
,
Kim
,
H. L.
,
Kim
,
D. G.
, and
Han
,
J. S.
,
2018
, “
Spatial Variation of Bone Biomechanical Properties Around a Dental Implant Using Nanoindentation: A Case Study
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
168
172
.10.1016/j.jmbbm.2017.12.027
9.
Chang
,
M. C.
,
Ko
,
C. C.
,
Liu
,
C. C.
,
Douglas
,
W. H.
,
DeLong
,
R.
,
Seong
,
W. J.
,
Hodges
,
J.
, and
An
,
K. N.
,
2003
, “
Elasticity of Alveolar Bone Near Dental Implant-Bone Interfaces After One Month's Healing
,”
J. Biomech.
,
36
(
8
), pp.
1209
1214
.10.1016/S0021-9290(03)00113-1
10.
Branemark
,
R.
,
Ohrnell
,
L. O.
,
Skalak
,
R.
,
Carlsson
,
L.
, and
Branemark
,
P. I.
,
1998
, “
Biomechanical Characterization of Osseointegration: An Experimental In Vivo Investigation in the Beagle Dog
,”
J. Orthop. Res.
,
16
(
1
), pp.
61
69
.10.1002/jor.1100160111
11.
Ronold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
,
2003
, “
Analysing the Optimal Value for Titanium Implant Roughness in Bone Attachment Using a Tensile Test
,”
Biomaterials
,
24
(
25
), pp.
4559
4564
.10.1016/S0142-9612(03)00256-4
12.
Ronold
,
H. J.
, and
Ellingsen
,
J. E.
,
2002
, “
Effect of Micro-Roughness Produced by TiO2 Blasting–Tensile Testing of Bone Attachment by Using Coin-Shaped Implants
,”
Biomaterials
,
23
(
21
), pp.
4211
4219
.10.1016/S0142-9612(02)00167-9
13.
Ronold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
,
2003
, “
A Study on the Effect of Dual Blasting With TiO2 on Titanium Implant Surfaces on Functional Attachment in Bone
,”
J. Biomed. Mater. Res. A
,
67A
(
2
), pp.
524
530
.10.1002/jbm.a.10580
14.
Ronold
,
H. J.
,
Ellingsen
,
J. E.
, and
Lyngstadaas
,
S. P.
,
2003
, “
Tensile Force Testing of Optimized Coin-Shaped Titanium Implant Attachment Kinetics in the Rabbit Tibiae
,”
J. Mater. Sci. Mater. Med.
,
14
(
10
), pp.
843
849
.10.1023/A:1025622407727
15.
Ronold
,
H. J.
, and
Ellingsen
,
J. E.
,
2002
, “
The Use of a Coin Shaped Implant for Direct in Situ Measurement of Attachment Strength for Osseointegrating Biomaterial Surfaces
,”
Biomaterials
,
23
(
10
), pp.
2201
2209
.10.1016/S0142-9612(01)00353-2
16.
Mathieu
,
V.
,
Fukui
,
K.
,
Matsukawa
,
M.
,
Kawabe
,
M.
,
Vayron
,
R.
,
Soffer
,
E.
,
Anagnostou
,
F.
, and
Haiat
,
G.
,
2011
, “
Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
021006
.10.1115/1.4003131
17.
Mathieu
,
V.
,
Vayron
,
R.
,
Soffer
,
E.
,
Anagnostou
,
F.
, and
Haiat
,
G.
,
2012
, “
Influence of Healing Time on the Ultrasonic Response of the Bone-Implant Interface
,”
Ultrasound Med. Biol.
,
38
(
4
), pp.
611
618
.10.1016/j.ultrasmedbio.2011.12.014
18.
Mathieu
,
V.
,
Vayron
,
R.
,
Barthel
,
E.
,
Dalmas
,
D.
,
Soffer
,
E.
,
Anagnostou
,
F.
, and
Haiat
,
G.
,
2012
, “
Mode III Cleavage of a Coin-Shaped Titanium Implant in Bone: Effect of Friction and Crack Propagation
,”
J. Mech. Behav. Biomed. Mater
,
8
, pp.
194
203
.10.1016/j.jmbbm.2011.12.012
19.
Willems
,
N. M.
,
Mulder
,
L.
,
den Toonder
,
J. M.
,
Zentner
,
A.
, and
Langenbach
,
G. E.
,
2014
, “
The Correlation Between Mineralization Degree and Bone Tissue Stiffness in the Porcine Mandibular Condyle
,”
J. Bone Miner. Metab.
,
32
(
1
), pp.
29
37
.10.1007/s00774-013-0464-7
20.
Pathak
,
S.
,
Vachhani
,
S. J.
,
Jepsen
,
K. J.
,
Goldman
,
H. M.
, and
Kalidindi
,
S. R.
,
2012
, “
Assessment of Lamellar Level Properties in Mouse Bone Utilizing a Novel Spherical Nanoindentation Data Analysis Method
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
102
117
.10.1016/j.jmbbm.2012.03.018
21.
Isaksson
,
H.
,
Malkiewicz
,
M.
,
Nowak
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2010
, “
Rabbit Cortical Bone Tissue Increases Its Elastic Stiffness but Becomes Less Viscoelastic With Age
,”
Bone
,
47
(
6
), pp.
1030
1038
.10.1016/j.bone.2010.08.015
22.
Wolfram
,
U.
,
Wilke
,
H. J.
, and
Zysset
,
P. K.
,
2010
, “
Valid Micro Finite Element Models of Vertebral Trabecular Bone Can Be Obtained Using Tissue Properties Measured With Nanoindentation Under Wet Conditions
,”
J. Biomech.
,
43
(
9
), pp.
1731
1737
.10.1016/j.jbiomech.2010.02.026
23.
Anesi
,
A.
,
Ferretti
,
M.
,
Cavani
,
F.
,
Salvatori
,
R.
,
Bianchi
,
M.
,
Russo
,
A.
,
Chiarini
,
L.
, and
Palumbo
,
C.
,
2018
, “
Structural and Ultrastructural Analyses of Bone Regeneration in Rabbit Cranial Osteotomy: Piezosurgery Versus Traditional Osteotomes
,”
J. Craniomaxillofac. Surg.
,
46
(
1
), pp.
107
118
.10.1016/j.jcms.2017.10.004
24.
Mora-Macias
,
J.
,
Pajares
,
A.
,
Miranda
,
P.
,
Dominguez
,
J.
, and
Reina-Romo
,
E.
,
2017
, “
Mechanical Characterization Via Nanoindentation of the Woven Bone Developed During Bone Transport
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
236
244
.10.1016/j.jmbbm.2017.05.031
25.
Pelled
,
G.
,
Tai
,
K.
,
Sheyn
,
D.
,
Zilberman
,
Y.
,
Kumbar
,
S.
,
Nair
,
L. S.
,
Laurencin
,
C. T.
,
Gazit
,
D.
, and
Ortiz
,
C.
,
2007
, “
Structural and Nanoindentation Studies of Stem Cell-Based Tissue-Engineered Bone
,”
J. Biomech.
,
40
(
2
), pp.
399
411
.10.1016/j.jbiomech.2005.12.012
26.
Tai
,
K.
,
Pelled
,
G.
,
Sheyn
,
D.
,
Bershteyn
,
A.
,
Han
,
L.
,
Kallai
,
I.
,
Zilberman
,
Y.
,
Ortiz
,
C.
, and
Gazit
,
D.
,
2008
, “
Nanobiomechanics of Repair Bone Regenerated by Genetically Modified Mesenchymal Stem Cells
,”
Tissue Eng. A
,
14
(
10
), pp.
1709
1720
.10.1089/ten.tea.2007.0241
27.
Tai
,
K.
,
Qi
,
H. J.
, and
Ortiz
,
C.
,
2005
, “
Effect of Mineral Content on the Nanoindentation Properties and Nanoscale Deformation Mechanisms of Bovine Tibial Cortical Bone
,”
J. Mater. Sci. Mater. Med.
,
16
(
10
), pp.
947
959
.10.1007/s10856-005-4429-9
28.
Tai
,
K.
,
Ulm
,
F. J.
, and
Ortiz
,
C.
,
2006
, “
Nanogranular Origins of the Strength of Bone
,”
Nano Lett.
,
6
(
11
), pp.
2520
2525
.10.1021/nl061877k
29.
Carnelli
,
D.
,
Gastaldi
,
D.
,
Sassi
,
V.
,
Contro
,
R.
,
Ortiz
,
C.
, and
Vena
,
P.
,
2010
, “
A Finite Element Model for Direction-Dependent Mechanical Response to Nanoindentation of Cortical Bone Allowing for Anisotropic Post-Yield Behavior of the Tissue
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081008
.10.1115/1.4001358
30.
Carnelli
,
D.
,
Vena
,
P.
,
Dao
,
M.
,
Ortiz
,
C.
, and
Contro
,
R.
,
2013
, “
Orientation and Size-Dependent Mechanical Modulation Within Individual Secondary Osteons in Cortical Bone Tissue
,”
J. R. Soc. Interface
,
10
(
81
), p.
20120953
.10.1098/rsif.2012.0953
31.
Anchieta
,
R. B.
,
Baldassarri
,
M.
,
Guastaldi
,
F.
,
Tovar
,
N.
,
Janal
,
M. N.
,
Gottlow
,
J.
,
Dard
,
M.
,
Jimbo
,
R.
, and
Coelho
,
P. G.
,
2014
, “
Mechanical Property Assessment of Bone Healing Around a Titanium-Zirconium Alloy Dental Implant
,”
Clin. Implant. Dent. Relat. Res.
,
16
(
6
), pp.
913
919
.10.1111/cid.12061
32.
Kim
,
D. G.
,
Elias
,
K. L.
,
Jeong
,
Y. H.
,
Kwon
,
H. J.
,
Clements
,
M.
,
Brantley
,
W. A.
,
Lee
,
D. J.
, and
Han
,
J. S.
,
2016
, “
Differences Between Buccal and Lingual Bone Quality and Quantity of Peri-Implant Regions
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
48
55
.10.1016/j.jmbbm.2015.12.036
33.
Johnson
,
T. B.
,
Siderits
,
B.
,
Nye
,
S.
,
Jeong
,
Y. H.
,
Han
,
S. H.
,
Rhyu
,
I. C.
,
Han
,
J. S.
,
Deguchi
,
T.
,
Beck
,
F. M.
, and
Kim
,
D. G.
,
2018
, “
Effect of Guided Bone Regeneration on Bone Quality Surrounding Dental Implants
,”
J. Biomech.
,
80
, pp.
166
170
.10.1016/j.jbiomech.2018.08.011
34.
Anchieta
,
R. B.
,
Guimaraes
,
M. V. M.
,
Suzuki
,
M.
,
Tovar
,
N.
,
Bonfante
,
E. A.
,
Atria
,
P.
, and
Coelho
,
P. G.
,
2018
, “
Nanomechanical Assessment of Bone Surrounding Implants Loaded for 3 Years in a Canine Experimental Model
,”
J. Oral Maxillofac. Surg.
,
76
(
1
), pp.
71
79
.10.1016/j.joms.2017.08.016
35.
Kim
,
D. G.
,
Kwon
,
H. J.
,
Jeong
,
Y. H.
,
Kosel
,
E.
,
Lee
,
D. J.
,
Han
,
J. S.
,
Kim
,
H. L.
, and
Kim
,
D. J.
,
2016
, “
Mechanical Properties of Bone Tissues Surrounding Dental Implant Systems With Different Treatments and Healing Periods
,”
Clin. Oral. Investig.
,
20
(
8
), pp.
2211
2220
.10.1007/s00784-016-1734-2
36.
Claffey
,
N.
,
Bashara
,
H.
,
O'Reilly
,
P.
, and
Polyzois
,
I.
,
2015
, “
Evaluation of New Bone Formation and Osseointegration Around Subperiosteal Titanium Implants With Histometry and Nanoindentation
,”
Int. J. Oral Maxillofac. Implants
,
30
(
5
), pp.
1004
1010
.10.11607/jomi.3647
37.
Vayron
,
R.
,
Barthel
,
E.
,
Mathieu
,
V.
,
Soffer
,
E.
,
Anagnostou
,
F.
, and
Haiat
,
G.
,
2012
, “
Nanoindentation Measurements of Biomechanical Properties in Mature and Newly Formed Bone Tissue Surrounding an Implant
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021007
.10.1115/1.4005981
38.
Matsukawa
,
M.
,
Tsubota
,
R.
,
Kawabe
,
M.
, and
Fukui
,
K.
,
2014
, “
Application of a micro-Brillouin Scattering Technique to Characterize Bone in the GHz Range
,”
Ultrasonics
,
54
(
5
), pp.
1155
1161
.10.1016/j.ultras.2013.09.016
39.
Cardinali
,
M. A.
,
Dallari
,
D.
,
Govoni
,
M.
,
Stagni
,
C.
,
Marmi
,
F.
,
Tschon
,
M.
,
Brogini
,
S.
,
Fioretto
,
D.
, and
Morresi
,
A.
,
2019
, “
Brillouin Micro-Spectroscopy of Subchondral Trabecular Bone and Articular Cartilage of the Human Femoral Head
,”
Biomed. Opt. Express
,
10
(
5
), pp.
2606
2611
.10.1364/BOE.10.002606
40.
Akilbekova
,
D.
,
Ogay
,
V.
,
Yakupov
,
T.
,
Sarsenova
,
M.
,
Umbayev
,
B.
,
Nurakhmetov
,
A.
,
Tazhin
,
K.
,
Yakovlev
,
V. V.
, and
Utegulov
,
Z. N.
,
2018
, “
Brillouin Spectroscopy and Radiography for Assessment of Viscoelastic and Regenerative Properties of Mammalian Bones
,”
J. Biomed. Opt.
,
23
(
09
), pp.
1
11
.10.1117/1.JBO.23.9.097004
41.
Kawabe
,
M.
,
Fukui
,
K.
,
Matsukawa
,
M.
,
Granke
,
M.
,
Saied
,
A.
,
Grimal
,
Q.
, and
Laugier
,
P.
,
2012
, “
Comparative Investigation of Elastic Properties in a Trabecula Using micro-Brillouin Scattering and Scanning Acoustic Microscopy
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
EL54
60
.10.1121/1.4730329
42.
Tsubota
,
R.
,
Fukui
,
K.
, and
Matsukawa
,
M.
,
2014
, “
Local Ultrasonic Wave Velocities in Trabeculae Measured by micro-Brillouin Scattering
,”
J. Acoust. Soc. Am.
,
135
(
2
), pp.
EL109
114
.10.1121/1.4862883
43.
Fukui
,
K.
,
Takayanagi
,
S.
,
Suga
,
D.
, and
Matsukawa
,
M.
,
2012
, “
Measurement of Wave Velocity in Cortical Bone by micro-Brillouin Scattering Technique: Effect of Bone Tissue Properties
,”
Jpn. J. Appl. Phys.
,
51
(
07GF20
), pp.
07GF20
2
.10.7567/JJAP.51.07GF20
44.
Imoto
,
Y.
,
Tsubota
,
R.
,
Kawabe
,
M.
,
Saito
,
M.
,
Marumo
,
K.
, and
Matsukawa
,
M.
,
2015
, “
Effects of Abnormal Collagen Crosslinks on Hypersonic Longitudinal Wave Velocity in Bovine Cortical Bone
,”
Glycative Stress Res.
,
2
(
3
), pp.
101
107
.10.24659/gsr.2.3_101
45.
Vayron
,
R.
,
Matsukawa
,
M.
,
Tsubota
,
R.
,
Mathieu
,
V.
,
Barthel
,
E.
, and
Haiat
,
G.
,
2014
, “
Evolution of Bone Biomechanical Properties at the Micrometer Scale Around Titanium Implant as a Function of Healing Time
,”
Phys. Med. Biol.
,
59
(
6
), pp.
1389
1406
.10.1088/0031-9155/59/6/1389
46.
Palmquist
,
A.
,
2018
, “
A Multiscale Analytical Approach to Evaluate Osseointegration
,”
J. Mater. Sci. Mater. Med.
,
29
(
5
), p.
60
.10.1007/s10856-018-6068-y
47.
Le Cann
,
S.
,
Tudisco
,
E.
,
Perdikouri
,
C.
,
Belfrage
,
O.
,
Kaestner
,
A.
,
Hall
,
S.
,
Tagil
,
M.
, and
Isaksson
,
H.
,
2017
, “
Characterization of the Bone-Metal Implant Interface by Digital Volume Correlation of in-Situ Loading Using Neutron Tomography
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
271
278
.10.1016/j.jmbbm.2017.07.001
48.
Winter
,
W.
,
Heckmann
,
S. M.
, and
Weber
,
H. P.
,
2004
, “
A Time-Dependent Healing Function for Immediate Loaded Implants
,”
J. Biomech.
,
37
(
12
), pp.
1861
1867
.10.1016/j.jbiomech.2004.02.033
49.
Chevallier
,
N.
,
Anagnostou
,
F.
,
Zilber
,
S.
,
Bodivit
,
G.
,
Maurin
,
S.
,
Barrault
,
A.
,
Bierling
,
P.
,
Hernigou
,
P.
,
Layrolle
,
P.
, and
Rouard
,
H.
,
2010
, “
Osteoblastic Differentiation of Human Mesenchymal Stem Cells With Platelet Lysate
,”
Biomaterials
,
31
(
2
), pp.
270
278
.10.1016/j.biomaterials.2009.09.043
50.
Soffer
,
E.
,
Ouhayoun
,
J. P.
,
Meunier
,
A.
, and
Anagnostou
,
F.
,
2006
, “
Effects of Autologous Platelet Lysates on Ceramic Particle Resorption and New Bone Formation in Critical Size Defects: The Role of Anatomical Sites
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
79B
(
1
), pp.
86
94
.10.1002/jbm.b.30516
51.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
52.
Doube
,
M.
,
Kłosowski
,
M. M.
,
Arganda-Carreras
,
I.
,
Cordelières
,
F. P.
,
Dougherty
,
R. P.
,
Jackson
,
J. S.
,
Schmid
,
B.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S. J.
,
2010
, “
BoneJ: Free and Extensible Bone Image Analysis in ImageJ
,”
Bone
,
47
(
6
), pp.
1076
1079
.10.1016/j.bone.2010.08.023
53.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.10.1557/jmr.2004.19.1.3
54.
Kruger
,
J. K.
,
Embs
,
J.
,
Brierley
,
J.
, and
Jimenez
,
R.
,
1998
, “
A New Brillouin Scattering Technique for the Investigation of Acoustic and Opto-Acoustic Properties: Application to Polymers
,”
J. Phys. D: Appl. Phys.
,
31
(
15
), pp.
1913
1917
.10.1088/0022-3727/31/15/021
55.
Kawabe
,
M.
,
Matsukawa
,
M.
, and
Ohtori
,
N.
,
2010
, “
Measurement of Wave Velocity Distribution in a Trabecula by micro-Brillouin Scattering Technique
,”
Jpn. J. Appl. Phys.
,
49
(
7
), p.
07HB05–04
.10.1143/JJAP.49.07HB05
56.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
,
1999
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.10.1016/S0021-9290(99)00111-6
57.
Bianchi
,
M.
,
Boi
,
M.
,
Sartori
,
M.
,
Giavaresi
,
G.
,
Lopomo
,
N.
,
Fini
,
M.
,
Dediu
,
A.
,
Tampieri
,
A.
,
Marcacci
,
M.
, and
Russo
,
A.
,
2015
, “
Nanomechanical Mapping of Bone Tissue Regenerated by Magnetic Scaffolds
,”
J. Mater. Sci. Mater. Med.
,
26
(
1
), p.
5363
.10.1007/s10856-014-5363-5
58.
Fraulob
,
M.
,
Pang
,
S.
,
Le Cann
,
S.
,
Vayron
,
R.
,
Laurent-Brocq
,
M.
,
Todatry
,
S.
,
Soares
,
J. A. N. T.
,
Jasiuk
,
I.
, and
Haiat
,
G.
,
2020
, “
Multimodal Characterization of the Bone-Implant Interface Using Raman Spectroscopy and Nanoindentation
,”
Med. Eng. Phys.
,
84
, pp.
60
67
.10.1016/j.medengphy.2020.07.013
59.
Sansalone
,
V.
,
Bousson
,
V.
,
Naili
,
S.
,
Bergot
,
C.
,
Peyrin
,
F.
,
Laredo
,
J. D.
, and
Haiat
,
G.
,
2012
, “
Anatomical Distribution of the Degree of Mineralization of Bone Tissue in Human Femoral Neck: Impact on Biomechanical Properties
,”
Bone
,
50
(
4
), pp.
876
884
.10.1016/j.bone.2011.12.020
60.
Sansalone
,
V.
,
Naili
,
S.
,
Bousson
,
V.
,
Bergot
,
C.
,
Peyrin
,
F.
,
Zarka
,
J.
,
Laredo
,
J. D.
, and
Haiat
,
G.
,
2010
, “
Determination of the Heterogeneous Anisotropic Elastic Properties of Human Femoral Bone: From Nanoscopic to Organ Scale
,”
J. Biomech.
,
43
(
10
), pp.
1857
1863
.10.1016/j.jbiomech.2010.03.034
61.
Isaksson
,
H.
,
Harjula
,
T.
,
Koistinen
,
A.
,
Iivarinen
,
J.
,
Seppanen
,
K.
,
Arokoski
,
J. P.
,
Brama
,
P. A.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
,
2010
, “
Collagen and Mineral Deposition in Rabbit Cortical Bone During Maturation and Growth: Effects on Tissue Properties
,”
J. Orthop. Res.
,
28
(
12
), pp.
1626
1633
.10.1002/jor.21186
62.
Kuzyk
,
P. R.
, and
Schemitsch
,
E. H.
,
2011
, “
The Basic Science of Peri-Implant Bone Healing
,”
Indian J. Orthopaed.i
45
(
2
), pp.
108
115
.10.4103/0019-5413.77129
63.
Puleo
,
D. A.
, and
Nanci
,
A.
,
1999
, “
Understanding and Controlling the Bone-Implant Interface
,”
Biomaterials
,
20
(
23–24
), pp.
2311
2321
.10.1016/S0142-9612(99)00160-X
64.
Berglundh
,
T.
,
Abrahamsson
,
I.
,
Lang
,
N. P.
, and
Lindhe
,
J.
,
2003
, “
De Novo Alveolar Bone Formation Adjacent to Endosseous Implants
,”
Clin. Oral Implants Res.
,
14
(
3
), pp.
251
262
.10.1034/j.1600-0501.2003.00972.x
65.
Davies
,
J. E.
,
2003
, “
Understanding Peri-Implant Endosseous Healing
,”
J. Dent. Educ.
,
67
(
8
), pp.
932
949
.10.1002/j.0022-0337.2003.67.8.tb03681.x
66.
Choi
,
J. Y.
,
Albrektsson
,
T.
,
Jeon
,
Y. J.
, and
Yeo
,
I. L.
,
2019
, “
Osteogenic Cell Behavior on Titanium Surfaces in Hard Tissue
,”
J. Clin. Med.
,
8
(
5
), pp.
604
10
.10.3390/jcm8050604
67.
Han
,
G.
, and
Shen
,
Z.
,
2015
, “
Microscopic View of Osseointegration and Functional Mechanisms of Implant Surfaces
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
56
, pp.
380
385
.10.1016/j.msec.2015.06.053
68.
Fiedler
,
I. A. K.
,
Casanova
,
M.
,
Keplinger
,
T.
,
Busse
,
B.
, and
Muller
,
R.
,
2018
, “
Effect of Short-Term Formaldehyde Fixation on Raman Spectral Parameters of Bone Quality
,”
J. Biomed. Opt.
,
23
(
11
), p.
1
.10.1117/1.JBO.23.11.116504
69.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
,
2002
, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone
,
30
(
1
), pp.
178
184
.10.1016/S8756-3282(01)00624-X
70.
Shah
,
F. A.
,
Thomsen
,
P.
, and
Palmquist
,
A.
,
2019
, “
Osseointegration and Current Interpretations of the Bone-Implant Interface
,”
Acta Biomater.
,
84
, pp.
1
15
.10.1016/j.actbio.2018.11.018
71.
Tsai
,
P.-I.
,
Lam
,
T.-N.
,
Wu
,
M.-H.
,
Tseng
,
K.-Y.
,
Chang
,
Y.-W.
,
Sun
,
J.-S.
,
Li
,
Y.-Y.
,
Lee
,
M.-H.
,
Chen
,
S.-Y.
,
Chang
,
C.-K.
,
Su
,
C.-J.
,
Lin
,
C.-H.
,
Chiang
,
C.-Y.
,
Ku
,
C.-S.
,
Tsou
,
N.-T.
,
Shih
,
S.-J.
,
Wang
,
C.-C.
, and
Huang
,
E.-W.
,
2019
, “
Multi-Scale Mapping for Collagen-Regulated Mineralization in Bone Remodeling of Additive Manufacturing Porous Implants
,”
Mater. Chem. Phys.
,
230
, pp.
83
92
.10.1016/j.matchemphys.2019.03.047
72.
Takano
,
Y.
,
Turner
,
C. H.
, and
Burr
,
D. B.
,
2009
, “
Mineral Anisotropy in Mineralized Tissues is Similar Among Species and Mineral Growth Occurs Independently of Collagen Orientation in Rats: Results From Acoustic Velocity Measurements
,”
J. Bone Miner. Res.
,
11
(
9
), pp.
1292
1301
.10.1002/jbmr.5650110914
You do not currently have access to this content.