Abstract

Advancement of subject-specific in silico medicine requires new imaging protocols tailored to specific anatomical features, paired with new constitutive model development based on structure/function relationships. In this study, we develop a new dual-velocity encoding coefficient (VENC) 4D flow MRI protocol that provides unprecedented spatial and temporal resolution of in vivo aortic deformation. All previous dual-VENC 4D flow MRI studies in the literature focus on an isolated segment of the aorta, which fail to capture the full spectrum of aortic heterogeneity that exists along the vessel length. The imaging protocol developed provides high sensitivity to all blood flow velocities throughout the entire cardiac cycle, overcoming the challenge of accurately measuring the highly unsteady nonuniform flow field in the aorta. Cross-sectional area change, volumetric flow rate, and compliance are observed to decrease with distance from the heart, while pulse wave velocity (PWV) is observed to increase. A nonlinear aortic lumen pressure–area relationship is observed throughout the aorta such that a high vessel compliance occurs during diastole, and a low vessel compliance occurs during systole. This suggests that a single value of compliance may not accurately represent vessel behavior during a cardiac cycle in vivo. This high-resolution MRI data provide key information on the spatial variation in nonlinear aortic compliance, which can significantly advance the state-of-the-art of in-silico diagnostic techniques for the human aorta.

References

References
1.
Svensson
,
L. G.
, and
Rodriguez
,
E. R.
,
2005
, “
Aortic Organ Disease Epidemic, and Why Do Balloons Pop?
,”
Circulation
,
112
(
8
), pp.
1082
1084
.10.1161/CIRCULATIONAHA.105.564682
2.
Hicks
,
C. W.
,
Wick
,
E. C.
,
Canner
,
J. K.
,
Black
,
J. H.
,
Arhuidese
,
I.
,
Qazi
,
U.
,
Obeid
,
T.
,
Freischlag
,
J. A.
, and
Malas
,
M. B.
,
2015
, “
Hospital-Level Factors Associated With Mortality After Endovascular and Open Abdominal Aortic Aneurysm Repair
,”
JAMA Surg
,
150
(
7
), p.
632
.10.1001/jamasurg.2014.3871
3.
I. trial IMPROVE Trial Investigators,
Powell, J. T.,
2014
, “
Endovascular or Open Repair Strategy for Ruptured Abdominal Aortic Aneurysm: 30 Day Outcomes From IMPROVE Randomised Trial
,”
BMJ
,
348
, p.
7661
.10.1136/bmj.f766
4.
Patel
,
R.
,
Sweeting
,
M. J.
,
Powell
,
J. T.
, and
Greenhalgh
,
R. M.
,
2016
, “
Endovascular Versus Open Repair of Abdominal Aortic Aneurysm in 15-Years' Follow-Up of the UK Endovascular Aneurysm Repair Trial 1 (EVAR Trial 1): A Randomised Controlled Trial
,”
Lancet
,
388
(
10058
), pp.
2366
2374
.10.1016/S0140-6736(16)31135-7
5.
Bhamidipati
,
C. M.
,
LaPar
,
D. J.
,
Mehta
,
G. S.
,
Kern
,
J. A.
,
Kron
,
I. L.
,
Upchurch
,
G. R.
, and
Ailawadi
,
G.
,
2011
, “
Have Thoracic Endografting Outcomes Improved Since U.S. Food and Drug Administration Approval?
,”
Ann. Thorac. Surg
,
91
(
5
), pp.
1314
1322
.10.1016/j.athoracsur.2011.01.037
6.
Conrad
,
M. F.
,
Tuchek
,
J.
,
Freezor
,
R.
,
Bavaria
,
J.
,
White
,
R.
, and
Fairman
,
R.
,
2017
, “
Results of the VALOR II Trial of the Medtronic Valiant Thoracic Stent Graft
,”
J. Vasc. Surg.
,
66
(
2
), pp.
335
342
.10.1016/j.jvs.2016.12.136
7.
Bischoff
,
M. S.
,
Ante
,
M.
,
Meisenbacher
,
K.
, and
Böckler
,
D.
,
2016
, “
Outcome of Thoracic Endovascular Aortic Repair in Patients With Thoracic and Thoracoabdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
63
(
5
), pp.
1170
1181
.10.1016/j.jvs.2015.11.045
8.
Concannon
,
J.
,
Kavanagh
,
E. P.
,
Hynes
,
N.
,
McHugh
,
P. E.
,
McGarry
,
J. P.
, and
Sultan
,
S.
,
2017
, “
The Streamliner Multilayer Flow Modulator in the Treatment of Complex Thoracoabdominal Aortic Aneurysms
,”
Vascular
,
25
(
2_suppl
), pp.
11
80
.https://www.vasculardiseasemanagement.com/content/streamliner-multilayer-flow-modulator-thoracoabdominal-aortic-pathologies-recommendations
9.
Ben-Shlomo
,
Y.
,
Spears
,
M.
,
Boustred
,
C.
,
May
,
M.
,
Anderson
,
S. G.
,
Benjamin
,
E. J.
,
Boutouyrie
,
P.
,
Cameron
,
J.
,
Chen
,
C.-H.
,
Cruickshank
,
J. K.
,
Hwang
,
S.-J.
,
Lakatta
,
E. G.
,
Laurent
,
S.
,
Maldonado
,
J.
,
Mitchell
,
G. F.
,
Najjar
,
S. S.
,
Newman
,
A. B.
,
Ohishi
,
M.
,
Pannier
,
B.
,
Pereira
,
T.
,
Vasan
,
R. S.
,
Shokawa
,
T.
,
Sutton-Tyrell
,
K.
,
Verbeke
,
F.
,
Wang
,
K.-L.
,
Webb
,
D. J.
,
Willum Hansen
,
T.
,
Zoungas
,
S.
,
McEniery
,
C. M.
,
Cockcroft
,
J. R.
, and
Wilkinson
,
I. B.
,
2014
, “
Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction
,”
J. Am. Coll. Cardiol.
,
63
(
7
), pp.
636
646
.10.1016/j.jacc.2013.09.063
10.
Dua
,
A.
,
Kuy
,
S.
,
Lee
,
C. J.
,
Upchurch
,
G. R.
, and
Desai
,
S. S.
,
2014
, “
Epidemiology of Aortic Aneurysm Repair in the United States From 2000 to 2010
,”
J. Vasc. Surg.
,
59
(
6
), pp.
1512
1517
.10.1016/j.jvs.2014.01.007
11.
Nolan
,
D. R.
, and
McGarry
,
J. P.
,
2016
, “
On the Correct Interpretation of Measured Force and Calculation of Material Stress in Biaxial Tests
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
187
199
.10.1016/j.jmbbm.2015.08.019
12.
Moriwaki
,
T.
,
Oie
,
T.
,
Takamizawa
,
K.
,
Murayama
,
Y.
,
Fukuda
,
T.
,
Omata
,
S.
,
Kanda
,
K.
, and
Nakayama
,
Y.
,
2011
, “
Variations in Local Elastic Modulus Along the Length of the Aorta as Observed by Use of a Scanning Haptic Microscope (SHM)
,”
J. Artif. Organs
,
14
(
4
), pp.
276
283
.10.1007/s10047-011-0596-2
13.
Krüger
,
T.
,
Veseli
,
K.
,
Lausberg
,
H.
,
Vöhringer
,
L.
,
Schneider
,
W.
, and
Schlensak
,
C.
,
2016
, “
Regional and Directional Compliance of the Healthy Aorta: An Ex Vivo Study in a Porcine Model
,”
Interact. Cardiovasc. Thorac. Surg.
,
23
(
1
), pp.
104
111
.10.1093/icvts/ivw053
14.
Mohiaddin
,
R. H.
,
Underwood
,
S. R.
,
Bogren
,
H. G.
,
Firmin
,
D. N.
,
Klipstein
,
R. H.
,
Rees
,
R. S.
, and
Longmore
,
D. B.
,
1989
, “
Regional Aortic Compliance Studied by Magnetic Resonance Imaging: The Effects of Age, Training, and Coronary Artery Disease
,”
Br. Hear. J
,
62
(
2
), pp.
90
96
.10.1136/hrt.62.2.90
15.
Länne
,
T.
,
Sonesson
,
B.
,
Bergqvist
,
D.
,
Bengtsson
,
H.
, and
Gustafsson
,
D.
,
1992
, “
Diameter and Compliance in the Male Human Abdominal Aorta: Influence of Age and Aortic Aneurysm
,”
Eur. J. Vasc. Surg.
,
6
(
2
), pp.
178
184
.10.1016/S0950-821X(05)80237-3
16.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
LaDisa
,
J. F.
,
Jansen
,
K. E.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2009
, “
On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model
,”
Ann. Biomed. Eng
,
37
(
11
), pp.
2153
2169
.10.1007/s10439-009-9760-8
17.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
–10
9
.10.1016/j.jbiomech.2012.10.012
18.
Crosetto
,
P.
,
Reymond
,
P.
,
Deparis
,
S.
,
Kontaxakis
,
D.
,
Stergiopulos
,
N.
, and
Quarteroni
,
A.
,
2011
, “
Fluid–Structure Interaction Simulation of Aortic Blood Flow
,”
Comput. Fluids
,
43
(
1
), pp.
46
57
.10.1016/j.compfluid.2010.11.032
19.
Gohean
,
J. R.
,
Moser
,
R. D.
, and
Zhang
,
Y.
,
2009
, “
Patient-Specific Isogeometric Fluid–Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.10.1016/j.cma.2009.04.015
20.
Viceconti
,
M.
,
Henney
,
A.
, and
Morley-Fletcher
,
E.
,
2016
, “
In Silico Clinical Trials: How Computer Simulation Will Transform the Biomedical Industry
,”
Int. J. Clin. Trials
,
3
(
2
), p.
37
.10.18203/2349-3259.ijct20161408
21.
Haraldsson
,
H.
,
Kefayati
,
S.
,
Ahn
,
S.
,
Dyverfeldt
,
P.
,
Lantz
,
J.
,
Karlsson
,
M.
,
Laub
,
G.
,
Ebbers
,
T.
, and
Saloner
,
D.
,
2018
, “
Assessment of Reynolds Stress Components and Turbulent Pressure Loss Using 4D Flow MRI With Extended Motion Encoding
,”
Magn. Reson. Med.
,
79
(
4
), pp.
1962
1971
.10.1002/mrm.26853
22.
Petersson
,
S.
,
Dyverfeldt
,
P.
,
Sigfridsson
,
A.
,
Lantz
,
J.
,
Carlhäll
,
C. J.
, and
Ebbers
,
T.
,
2016
, “
Quantification of Turbulence and Velocity in Stenotic Flow Using Spiral Three-Dimensional Phase-Contrast MRI
,”
Magn. Reson. Med.
,
75
(
3
), pp.
1249
1255
.10.1002/mrm.25698
23.
Amini
,
A. A.
,
Henn
,
A.
,
Callahan
,
S.
,
Kendrick
,
M.
, and
Kheradvar
,
A.
,
2019
, “
An MR Compatible Aortic Arch Phantom With Calcific Polymeric Valves
,”
Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging
, Vol.
10953
, San Diego, CA, Feb. 19–21, p.
55
.10.1117/12.2511996
24.
Callahan
,
S.
,
2019
, “
Dual-Venc Acquisition for 4D Flow MRI in Aortic Stenosis With Spiral Readouts
,”
J. Magn. Reson. Imaging
, 52, pp.
117
128
.10.1002/jmri.27004
25.
Callaghan
,
F. M.
,
Kozor
,
R.
,
Sherrah
,
A. G.
,
Vallely
,
M.
,
Celermajer
,
D.
,
Figtree
,
G. A.
, and
Grieve
,
S. M.
,
2016
, “
Use of Multi-Velocity Encoding 4D Flow MRI to Improve Quantification of Flow Patterns in the Aorta
,”
J. Magn. Reson. Imaging
,
43
(
2
), pp.
352
363
.10.1002/jmri.24991
26.
Schnell
,
S.
,
Markl
,
M.
,
Entezari
,
P.
,
Mahadewia
,
R. J.
,
Semaan
,
E.
,
Stankovic
,
Z.
,
Collins
,
J.
,
Carr
,
J.
, and
Jung
,
B.
,
2014
, “
K-t GRAPPA Accelerated Four-Dimensional Flow MRI in the Aorta: Effect on Scan Time, Image Quality, and Quantification of Flow and Wall Shear Stress
,”
Magn. Reson. Med.
,
72
(
2
), pp.
522
533
.10.1002/mrm.24925
27.
Ha
,
H.
,
Kim
,
G. B.
,
Kweon
,
J.
,
Kim
,
Y.-H.
,
Kim
,
N.
,
Yang
,
D. H.
, and
Lee
,
S. J.
,
2016
, “
Multi-VENC Acquisition of Four-Dimensional Phase-Contrast MRI to Improve Precision of Velocity Field Measurement
,”
Magn. Reson. Med.
,
75
(
5
), pp.
1909
1919
.10.1002/mrm.25715
28.
Nilsson
,
A.
,
Bloch
,
K. M.
,
Carlsson
,
M.
,
Heiberg
,
E.
, and
Ståhlberg
,
F.
,
2012
, “
Variable Velocity Encoding in a Three-Dimensional, Three-Directional Phase Contrast Sequence: Evaluation in Phantom and Volunteers
,”
J. Magn. Reson. Imaging
,
36
(
6
), pp.
1450
1459
.10.1002/jmri.23778
29.
Binter
,
C.
,
Knobloch
,
V.
,
Manka
,
R.
,
Sigfridsson
,
A.
, and
Kozerke
,
S.
,
2013
, “
Bayesian Multipoint Velocity Encoding for Concurrent Flow and Turbulence Mapping
,”
Magn. Reson. Med
,
69
(
5
), pp.
1337
1345
.10.1002/mrm.24370
30.
Knobloch
,
V.
,
Binter
,
C.
,
Gülan
,
U.
,
Sigfridsson
,
A.
,
Holzner
,
M.
,
Lüthi
,
B.
, and
Kozerke
,
S.
,
2014
, “
Mapping Mean and Fluctuating Velocities by Bayesian Multipoint MR Velocity Encoding-Validation Against 3D Particle Tracking Velocimetry
,”
Magn. Reson. Med.
,
71
(
4
), pp.
1405
1415
.10.1002/mrm.24785
31.
Sherrah
,
A. G.
,
Callaghan
,
F.
,
Puranik
,
R.
,
Jeremy
,
R.
,
Bannon
,
P.
,
Vallely
,
M.
, and
Grieve
,
S.
,
2017
, “
Multi-Velocity Encoding Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Chronic Aortic Dissection
,”
AORTA
,
5
(
3
), pp.
80
90
.10.12945/j.aorta.2016.16.046
32.
Tierney
,
Á. P.
,
Callanan
,
A.
, and
McGloughlin
,
T. M.
,
2011
, “
In Vivo Feasibility Case Study for Evaluating Abdominal Aortic Aneurysm Tissue Properties and Rupture Potential Using Acoustic Radiation Force Impulse Imaging
,”
J. Mech. Behav. Biomed. Mater
,
4
(
3
), pp.
507
513
.10.1016/j.jmbbm.2010.12.017
33.
Lalande
,
A.
,
Khau Van Kien
,
P.
,
Walker
,
P. M.
,
Zhu
,
L.
,
Legrand
,
L.
,
Claustres
,
M.
,
Jeunemaître
,
X.
,
Brunotte
,
F.
, and
Wolf
,
J. E.
,
2008
, “
Compliance and Pulse Wave Velocity Assessed by MRI Detect Early Aortic Impairment in Young Patients With Mutation of the Smooth Muscle Myosin Heavy Chain
,”
J. Magn. Reson. Imaging
,
28
(
5
), pp.
1180
1187
.10.1002/jmri.21565
34.
Al Musa
,
T.
,
2016
, “
Assessment of Aortic Stiffness by Cardiovascular Magnetic Resonance Following the Treatment of Severe Aortic Stenosis by TAVI and Surgical AVR
,”
J. Cardiovasc. Magn. Reson.
,
18
(
1
), p.
37
.10.1186/s12968-016-0256-z
35.
Cibis
,
M.
,
Potters
,
W. V.
,
Gijsen
,
F. J. H.
,
Marquering
,
H.
,
vanBavel
,
E.
,
van der Steen
,
A. F. W.
,
Nederveen
,
A. J.
, and
Wentzel
,
J. J.
,
2014
, “
Wall Shear Stress Calculations Based on 3D Cine Phase Contrast MRI and Computational Fluid Dynamics: A Comparison Study in Healthy Carotid Arteries
,”
NMR Biomed.
,
27
(
7
), pp.
826
834
.10.1002/nbm.3126
36.
Potters
,
W. V.
,
Cibis
,
M.
,
Marquering
,
H. A.
,
vanBavel
,
E.
,
Gijsen
,
F.
,
Wentzel
,
J. J.
, and
Nederveen
,
A. J.
,
2014
, “
4D MRI-Based Wall Shear Stress Quantification in the Carotid Bifurcation: A Validation Study in Volunteers Using Computational Fluid Dynamics
,”
J. Cardiovasc. Magn. Reson
,
16
(
S1
), p.
162
.10.1186/1532-429X-16-S1-P162
37.
Markl
,
M.
,
Frydrychowicz
,
A.
,
Kozerke
,
S.
,
Hope
,
M.
, and
Wieben
,
O.
,
2012
, “
4D Flow MRI
,”
J. Magn. Reson. Imaging
,
36
(
5
), pp.
1015
1036
.10.1002/jmri.23632
38.
Stankovic
,
Z.
,
Allen
,
B. D.
,
Garcia
,
J.
,
Jarvis
,
K. B.
, and
Markl
,
M.
,
2014
, “
4D Flow Imaging With MRI
,”
Cardiovasc. Diagn. Ther.
,
4
(
2
), pp.
173
192
.10.3978/j.issn.2223-3652.2014.01.02
39.
Markl
,
M.
,
Schnell
,
S.
,
Wu
,
C.
, and
Rigsby
,
C.
,.
2016
, “
Advanced Flow MRI: Emerging Techniques and Applications
,”
Clin. Radiol.
, 71(8), pp.
779
795
.10.1016/j.crad.2016.01.011
40.
Ha
,
H.
,
Kim
,
G. B.
,
Kweon
,
J.
,
Lee
,
S. J.
,
Kim
,
Y.-H.
,
Lee
,
D. H.
,
Yang
,
D. H.
, and
Kim
,
N.
,
2016
, “
Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications
,”
Korean J. Radiol
,
17
(
4
), p.
445
.10.3348/kjr.2016.17.4.445
41.
J. P
,
R.
,
2010
, “
Cardiovascular Magnetic Resonance Physics for Clinicians: Part I
,”
J. Cardiovasc. Magn. Reson
,
12
(
1
), p.
71
.10.1186/1532-429X-12-71
42.
Biglands
,
J. D.
,
Radjenovic
,
A.
, and
Ridgway
,
J. P.
,
2012
, “
Cardiovascular Magnetic Resonance Physics for Clinicians: Part II
,”
J. Cardiovasc. Magn. Reson
,
14
(
1
), p.
66
.10.1186/1532-429X-14-66
43.
Bernstein
,
M. A.
,
King
,
K. F.
, and
Zhou
,
X. J.
,
2004
,
Handbook of MRI Pulse Sequences
,
Academic Press
, London, UK.10.1016/B978-0-12-092861-3.X5000-6
44.
Tan
,
K. C.
,
Kim
,
T. H.
,
Chun
,
S. I.
,
Shin
,
W. J.
, and
Mun
,
C. W.
,
2008
, “
A Simple, Fast, and Robust Phase Unwrapping Method to Unwrap MR Phase Images
,”
Fourth Kuala Lumpur International Conference on Biomedical Engineering
, Kuala Lumpur, Malaysia, June 25–28, pp.
487
490
.10.1007/978-3-540-69139-6_123
45.
Loecher
,
M.
,
Schrauben
,
E.
,
Johnson
,
K. M.
, and
Wieben
,
O.
,
2016
, “
Phase Unwrapping in 4D MR Flow With a 4D Single-Step Laplacian Algorithm
,”
J. Magn. Reson. Imaging
,
43
(
4
), pp.
833
842
. Apr.10.1002/jmri.25045
46.
Su
,
X.
, and
Chen
,
W.
,
2004
, “
Reliability-Guided Phase Unwrapping Algorithm: A Review
,”
Opt. Lasers Eng.
,
42
(
3
), pp.
245
261
.10.1016/j.optlaseng.2003.11.002
47.
Cheng
,
J.
,
Mei
,
Y.
,
Liu
,
B.
,
Guan
,
J.
,
Liu
,
X.
,
Wu
,
E. X.
,
Feng
,
Q.
,
Chen
,
W.
, and
Feng
,
Y.
,
2018
, “
A Novel Phase-Unwrapping Method Based on Pixel Clustering and Local Surface Fitting With Application to Dixon Water-Fat MRI
,”
Magn. Reson. Med.
,
79
(
1
), pp.
515
528
.10.1002/mrm.26647
48.
Cusack
,
R.
, and
Papadakis
,
N.
,
2002
, “
New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images
,”
Neuroimage
,
16
(
3
), pp.
754
764
.10.1006/nimg.2002.1092
49.
Bioucas-Dias
,
J. M.
, and
Valadao
,
G.
,
2007
, “
Phase Unwrapping Via Graph Cuts
,”
IEEE Trans. Image Process
,
16
(
3
), pp.
698
709
.10.1109/TIP.2006.888351
50.
Dyverfeldt
,
P.
,
Bissell
,
M.
,
Barker
,
A. J.
,
Bolger
,
A. F.
,
Carlhäll
,
C. J.
,
Ebbers
,
T.
,
Francios
,
C. J.
,
Frydrychowicz
,
A.
,
Geiger
,
J.
,
Giese
,
D.
,
Hope
,
M. D.
,
Kilner
,
P. J.
,
Kozerke
,
S.
,
Myerson
,
S.
,
Neubauer
,
S.
,
Wieben
,
O.
, and
Markl
,
M.
,
2015
, “
4D Flow Cardiovascular Magnetic Resonance Consensus Statement
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), p.
72
.10.1186/s12968-015-0174-5
51.
Pelc
,
N. J.
,
Bernstein
,
M. A.
,
Shimakawa
,
A.
, and
Glover
,
G. H.
,
1991
, “
Encoding Strategies for Three-Direction Phase-Contrast MR Imaging of Flow
,”
J. Magn. Reson. Imaging
,
1
(
4
), pp.
405
413
.10.1002/jmri.1880010404
52.
Bustamante
,
M.
,
Gupta
,
V.
,
Carlhäll
,
C.-J.
, and
Ebbers
,
T.
,
2017
, “
Improving Visualization of 4D Flow Cardiovascular Magnetic Resonance With Four-Dimensional Angiographic Data: Generation of a 4D Phase-Contrast Magnetic Resonance Cardio Angiography (4D PC-MRCA)
,”
J. Cardiovasc. Magn. Reson.
,
19
(
1
), p.
47
.10.1186/s12968-017-0360-8
53.
Vulliémoz
,
S.
,
Stergiopulos
,
N.
, and
Meuli
,
R.
,
2002
, “
Estimation of Local Aortic Elastic Properties With MRI
,”
Magn. Reson. Med.
,
47
(
4
), pp.
649
654
.10.1002/mrm.10100
54.
Wentland
,
A. L.
,
Grist
,
T. M.
, and
Wieben
,
O.
,
2014
, “
Review of MRI-Based Measurements of Pulse Wave Velocity: A Biomarker of Arterial Stiffness
,”
Cardiovasc. Diagn. Ther.
,
4
(
2
), pp.
193
206
.10.3978/j.issn.2223-3652.2014.03.04
55.
Cavalcante
,
J. L.
,
Lima
,
J. A. C.
,
Redheuil
,
A.
, and
Al-Mallah
,
M. H.
,
2011
, “
Aortic Stiffness
,”
J. Am. Coll. Cardiol.
,
57
(
14
), pp.
1511
1522
.10.1016/j.jacc.2010.12.017
56.
Zhou
,
J.
, and
Fung
,
Y. C.
,
1997
, “
The Degree of Nonlinearity and Anisotropy of Blood Vessel Elasticity
,”
Proc. Natl. Acad. Sci.
,
94
(
26
), pp.
14255
14260
.10.1073/pnas.94.26.14255
57.
Ogden
,
R. W.
,
2003
, “
Nonlinear Elasticity, Anisotropy, Material Stability and Residual Stresses in Soft Tissue
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
Springer Vienna
,
Vienna
, pp.
65
108
.10.1007/978-3-7091-2736-0_3
58.
Agrawal
,
V.
,
Kollimada
,
S. A.
,
Byju
,
A. G.
, and
Gundiah
,
N.
,
2013
, “
Regional Variations in the Nonlinearity and Anisotropy of Bovine Aortic Elastin
,”
Biomech. Model. Mechanobiol
,
12
(
6
), pp.
1181
1194
.10.1007/s10237-013-0474-3
59.
Lamata
,
P.
,
Pitcher
,
A.
,
Krittian
,
S.
,
Nordsletten
,
D.
,
Bissell
,
M. M.
,
Cassar
,
T.
,
Barker
,
A. J.
,
Markl
,
M.
,
Neubauer
,
S.
, and
Smith
,
N. P.
,
2014
, “
Aortic Relative Pressure Components Derived From Four-Dimensional Flow Cardiovascular Magnetic Resonance
,”
Magn. Reson. Med.
,
72
(
4
), pp.
1162
1169
.10.1002/mrm.25015
60.
Vennin
,
S.
,
Mayer
,
A.
,
Li
,
Y.
,
Fok
,
H.
,
Clapp
,
B.
,
Alastruey
,
J.
, and
Chowienczyk
,
P.
,
2015
, “
Non-Invasive Calculation of the Aortic Blood Pressure Waveform From the Flow Velocity Waveform: A Proof of Concept
,”
Am. J. Physiol. Hear. Circ. Physiol.
, 309(5), pp. H969-H976.10.1152/ajpheart.00152.2015
61.
Moerman
,
K. M.
,
2018
, “
GIBBON: The Geometry and Image-Based Bioengineering Add-On
,”
J. Open Source Software
,
3
(
22
), p.
506
.10.21105/joss.00506
62.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
63.
Nett
,
E. J.
,
Johnson
,
K. M.
,
Frydrychowicz
,
A.
,
Del Rio
,
A. M.
,
Schrauben
,
E.
,
Francois
,
C. J.
, and
Wieben
,
O.
,
2012
, “
Four-Dimensional Phase Contrast MRI With Accelerated Dual Velocity Encoding
,”
J. Magn. Reson. Imaging
,
35
(
6
), pp.
1462
1471
.10.1002/jmri.23588
64.
Moersdorf
,
R.
,
Treutlein
,
M.
,
Kroeger
,
J. R.
,
Ruijsink
,
B.
,
Wong
,
J.
,
Maintz
,
D.
,
Weiss
,
K.
,
Bunck
,
A. C.
,
Baeßler
,
B.
, and
Giese
,
D.
,
2019
, “
Precision, Reproducibility and Applicability of an Undersampled Multi-Venc 4D Flow MRI Sequence for the Assessment of Cardiac Hemodynamics
,”
Magn. Reson. Imaging
,
61
, pp.
73
82
.10.1016/j.mri.2019.05.015
65.
Giese
,
D.
,
Wong
,
J.
,
Greil
,
G. F.
,
Buehrer
,
M.
,
Schaeffter
,
T.
, and
Kozerke
,
S.
,
2014
, “
Towards Highly Accelerated Cartesian Time-Resolved 3D Flow Cardiovascular Magnetic Resonance in the Clinical Setting
,”
J. Cardiovasc. Magn. Reson
,
16
(
1
), p.
42
.10.1186/1532-429X-16-42
66.
Schnell
,
S.
,
Ansari
,
S. A.
,
Wu
,
C.
,
Garcia
,
J.
,
Murphy
,
I. G.
,
Rahman
,
O. A.
,
Rahsepar
,
A. A.
,
Aristova
,
M.
,
Collins
,
J. D.
,
Carr
,
J. C.
, and
Markl
,
M.
,
2017
, “
Accelerated Dual-Venc 4D Flow MRI for Neurovascular Applications
,”
J. Magn. Reson. Imaging
,
46
(
1
), pp.
102
114
.10.1002/jmri.25595
67.
Sonesson
,
B.
,
Länne
,
T.
,
Vernersson
,
E.
, and
Hansen
,
F.
,
1994
, “
Sex Difference in the Mechanical Properties of the Abdominal Aorta in Human Beings
,”
J. Vasc. Surg.
,
20
(
6
), pp.
959
969
.10.1016/0741-5214(94)90234-8
68.
Sugitani
,
H.
,
Hirano
,
E.
,
Knutsen
,
R. H.
,
Shifren
,
A.
,
Wagenseil
,
J. E.
,
Ciliberto
,
C.
,
Kozel
,
B. A.
,
Urban
,
Z.
,
Davis
,
E. C.
,
Broekelmann
,
T. J.
, and
Mecham
,
R. P.
,
2012
, “
Alternative Splicing and Tissue-Specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated With Dominant Cutis Laxa
,”
J. Biol. Chem.
,
287
(
26
), pp.
22055
22067
.10.1074/jbc.M111.327940
69.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1130
.10.1007/s10439-013-0799-1
70.
Kim
,
J.
,
Cocciolone
,
A. J.
,
Staiculescu
,
M. C.
,
Mecham
,
R. P.
, and
Wagenseil
,
J. E.
,
2019
, “
Captopril Treatment During Development Alleviates Mechanically Induced Aortic Remodeling in Newborn Elastin Knockout Mice
,”
Biomech. Model. Mechanobiol.
, 19, pp. 99–112.10.1007/s10237-019-01198-2
71.
Saouti
,
N.
,
Marcus
,
J. T.
,
Noordegraaf
,
A. V.
, and
Westerhof
,
N.
,
2012
, “
Aortic Function Quantified: The Heart's Essential Cushion
,”
J. Appl. Physiol
,
113
(
8
), pp.
1285
1291
.10.1152/japplphysiol.00432.2012
72.
Tsamis
,
A.
,
Krawiec
,
J. T.
, and
Vorp
,
D. A.
,
2013
, “
Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review
,”
J. R. Soc. Interface
,
10
(
83
), p.
20121004
.10.1098/rsif.2012.1004
73.
Concannon
,
J.
,
Dockery
,
P.
,
Black
,
A.
,
Sultan
,
S.
,
Hynes
,
N.
,
McHugh
,
P. E.
,
Moerman
,
K. M.
, and
McGarry
,
J. P.
,
2019
, “
Quantification of the Regional Bioarchitecture in the Human Aorta
,”
J. Anat.
, 236(1), pp.
142
155
.10.1111/joa.13076
74.
Sherif
,
H. M. F.
,
2014
, “
Heterogeneity in the Segmental Development of the Aortic Tree: Impact on Management of Genetically Triggered Aortic Aneurysms
,”
Aorta (Stamford, Conn.)
,
2
(
5
), pp.
186
195
.10.12945/j.aorta.2014.14-032
75.
McDonnell
,
B. J.
,
Butcher
,
Y. L.
,
Cockcroft
,
J. R.
,
Wilkinson
,
I. B.
,
Erusalimsky
,
J. D.
, and
McEniery
,
C. M.
,
2017
, “
The Age-Dependent Association Between Aortic Pulse Wave Velocity and Telomere Length
,”
J. Physiol.
,
595
(
5
), pp.
1627
1635
.10.1113/JP273689
76.
Wilson
,
P. W. F.
,
D'Agostino
,
R. B.
,
Levy
,
D.
,
Belanger
,
A. M.
,
Silbershatz
,
H.
, and
Kannel
,
W. B.
,
1998
, “
Prediction of Coronary Heart Disease Using Risk Factor Categories
,”
Circulation
,
97
(
18
), pp.
1837
1847
.10.1161/01.CIR.97.18.1837
77.
McEniery
,
C. M.
,
Yasmin
,
I. R. H.
,
Qasem
,
A.
,
Wilkinson
,
I. B.
, and
Cockcroft
,
J. R.
,
2005
, “
Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity: The Anglo-Cardiff Collaborative Trial (ACCT)
,”
J. Am. Coll. Cardiol.
,
46
(
9
), pp.
1753
1760
.10.1016/j.jacc.2005.07.037
78.
Blacher
,
J.
,
Asmar
,
R.
,
Djane
,
S.
,
London
,
G. M.
, and
Safar
,
M. E.
,
1999
, “
Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients
,”
Hypertension
,
33
(
5
), pp.
1111
1117
.10.1161/01.HYP.33.5.1111
79.
Reference Values for Arterial Stiffness' Collaboration,
2010
, “
Determinants of Pulse Wave Velocity in Healthy People and in the Presence of Cardiovascular Risk Factors: ‘Establishing Normal and Reference Values
,”
Eur. Heart J.
,
31
(
19
), pp.
2338
2350
.10.1093/eurheartj/ehq165
80.
Quinaglia
,
T.
,
Bensalah
,
M. Z.
,
Bollache
,
E.
,
Kachenoura
,
N.
,
Soulat
,
G.
,
Boutouyrie
,
P.
,
Laurent
,
S.
, and
Mousseaux
,
E.
,
2018
, “
Differential Impact of Local and Regional Aortic Stiffness on Left Ventricular Remodeling
,”
J. Hypertens.
,
36
(
3
), pp.
552
559
.10.1097/HJH.0000000000001597
81.
Boardman
,
H.
,
Lewandowski
,
A. J.
,
Lazdam
,
M.
,
Kenworthy
,
Y.
,
Whitworth
,
P.
,
Zwager
,
C. L.
,
Francis
,
J. M.
,
Aye
,
C. Y. L.
,
Williamson
,
W.
,
Neubauer
,
S.
, and
Leeson
,
P.
,
2017
, “
Aortic Stiffness and Blood Pressure Variability in Young People
,”
J. Hypertens.
,
35
(
3
), pp.
513
522
.10.1097/HJH.0000000000001192
82.
Nolan
,
D. R.
, and
McGarry
,
J. P.
,
2016
, “
On the Compressibility of Arterial Tissue
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
993
1007
.10.1007/s10439-015-1417-1
83.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.10.1023/A:1010835316564
84.
Nolan
,
D.
,
Ogden
,
R. W.
,
Destrade
,
M.
, and
McGarry
,
J. P.
,
2014
, “
A Robust Anisotropic Hyperelastic Formulation for the Modelling of Soft Tissue
,”
J. Mech. Behav. Biomed. Mater.
, 39, pp.
48
60
.10.1016/j.jmbbm.2014.06.016
85.
Lehmann
,
E. D.
,
Hopkins
,
K. D.
,
Rawesh
,
A.
,
Joseph
,
R. C.
,
Kongola
,
K.
,
Coppack
,
S. W.
, and
Gosling
,
R. G.
,
1998
, “
Relation Between Number of Cardiovascular Risk Factors/Events and Noninvasive Doppler Ultrasound Assessments of Aortic Compliance
,”
Hypertension
,
32
(
3
), pp.
565
569
.10.1161/01.HYP.32.3.565
86.
Bogren
,
H. G.
,
Mohiaddin
,
R. H.
,
Klipstein
,
R. K.
,
Firmin
,
D. N.
,
Underwood
,
R. S.
,
Rees
,
S. R.
, and
Longmore
,
D. B.
,
1989
, “
The Function of the Aorta in Ischemic Heart Disease: A Magnetic Resonance and Angiographic Study of Aortic Compliance and Blood Flow Patterns
,”
Am. Heart J.
,
118
(
2
), pp.
234
247
.10.1016/0002-8703(89)90181-6
87.
Mitéran
,
J.
,
Bouchot
,
O.
,
Cochet
,
A.
, and
Lalande
,
A.
,
2018
, “
Automatic Determination of Aortic Compliance Based on MRI and Adapted Curvilinear Detector
,”
Biomed. Signal Process. Control
,
40
, pp.
295
311
.10.1016/j.bspc.2017.09.002
88.
van Herwaarden
,
J. A.
,
Muhs
,
B. E.
,
Vincken
,
K. L.
,
van Prehn
,
J.
,
Teutelink
,
A.
,
Bartels
,
L. W.
,
Moll
,
F. L.
, and
Verhagen
,
H. J. M.
,
2006
, “
Aortic Compliance Following EVAR and the Influence of Different Endografts: Determination Using Dynamic MRA
,”
J. Endovasc. Ther.
,
13
(
3
), pp.
406
414
.10.1583/06-1848.1
89.
Ioannou
,
C. V.
,
Morel
,
D. R.
,
Katsamouris
,
A. N.
,
Katranitsa
,
S.
,
Startchik
,
I.
,
Kalangos
,
A.
,
Westerhof
,
N.
, and
Stergiopulos
,
N.
,
2009
, “
Left Ventricular Hypertrophy Induced by Reduced Aortic Compliance
,”
J. Vasc. Res.
,
46
(
5
), pp.
417
425
.10.1159/000194272
90.
Vyas
,
M.
,
Izzojr
,
J.
,
Lacourciere
,
Y.
,
Arnold
,
J.
,
Dunlap
,
M.
,
Amato
,
J.
,
Pfeffer
,
M.
, and
Mitchell
,
G.
,
2007
, “
Augmentation Index and Central Aortic Stiffness in Middle-Aged to Elderly Individuals
,”
Am. J. Hypertens.
,
20
(
6
), pp.
642
647
.10.1016/j.amjhyper.2007.01.008
91.
Baliga
,
R. R.
,
Nienaber
,
C. A.
,
Bossone
,
E.
,
Oh
,
J. K.
,
Isselbacher
,
E. M.
,
Sechtem
,
U.
,
Fattori
,
R.
,
Raman
,
S. V.
, and
Eagle
,
K. A.
,
2014
, “
The Role of Imaging in Aortic Dissection and Related Syndromes
,”
JACC: Cardiovasc. Imaging
,
7
(
4
), pp.
406
424
.10.1016/j.jcmg.2013.10.015
92.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
..10.1016/j.jbiomech.2005.03.003
93.
Matsumoto
,
T.
,
Fukui
,
T.
,
Tanaka
,
T.
,
Ikuta
,
N.
,
Ohashi
,
T.
,
Kumagai
,
K.
,
Akimoto
,
H.
,
Tabayashi
,
K.
, and
Sato
,
M.
,
2009
, “
Biaxial Tensile Properties of Thoracic Aortic Aneurysm Tissues
,”
J. Biomech. Sci. Eng.
,
4
(
4
), pp.
518
529
.10.1299/jbse.4.518
94.
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Sutcliffe
,
M. P. F.
,
Brown
,
A. J.
,
Jing
,
Z.
,
Gillard
,
J. H.
, and
Lu
,
Q.
,
2015
, “
Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2745
2759
.10.1007/s10439-015-1323-6
95.
Laksari
,
K.
,
Shahmirzadi
,
D.
,
Acosta
,
C. J.
, and
Konofagou
,
E.
,
2016
, “
Energy-Based Constitutive Modelling of Local Material Properties of Canine Aortas
,”
J. R. Soc. Interface
,
3
(
9
), p.
160365
.
96.
Forsell
,
C.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2013
, “
The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach
,”
Ann. Biomed. Eng.
, 41(7), pp.
1554
1566
.10.1007/s10439-012-0711-4
97.
Gundiah
,
N.
,
Babu
,
A. R.
, and
Pruitt
,
L. A.
,
2013
, “
Effects of Elastase and Collagenase on the Nonlinearity and Anisotropy of Porcine Aorta
,”
Physiol. Meas.
,
34
(
12
), pp.
1657
1673
.10.1088/0967-3334/34/12/1657
98.
Reeps
,
C.
,
Maier
,
A.
,
Pelisek
,
J.
,
Härtl
,
F.
,
Grabher-Meier
,
V.
,
Wall
,
W. A.
,
Essler
,
M.
,
Eckstein
,
H.-H.
, and
Gee
,
M. W.
,
2013
, “
Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall
,”
Biomech. Model. Mechanobiol
,
12
(
4
), pp.
717
733
.10.1007/s10237-012-0436-1
99.
Adji
,
A.
, and
O'Rourke
,
M. F.
,
2017
, “
Central Aortic Pressure Calibration
,”
J. Hypertens
,
35
(
4
), pp.
893
894
.10.1097/HJH.0000000000001246
100.
Kohn
,
J. C.
,
Lampi
,
M. C.
, and
Reinhart-King
,
C. A.
,
2015
, “
Age-Related Vascular Stiffening: Causes and Consequences
,”
Front. Genet.
,
06
, p.
112
.10.3389/fgene.2015.00112
101.
Wohlfahrt
,
P.
,
Redfield
,
M. M.
,
Melenovsky
,
V.
,
Lopez-Jimenez
,
F.
,
Rodeheffer
,
R. J.
, and
Borlaug
,
B. A.
,
2015
, “
Impact of Chronic Changes in Arterial Compliance and Resistance on Left Ventricular Ageing in Humans
,”
Eur. J. Heart Fail.
,
17
(
1
), pp.
27
34
.10.1002/ejhf.190
102.
Back
,
M.
,
Kopchok
,
G.
,
Mueller
,
M.
,
Cavaye
,
D.
,
Donayre
,
C.
, and
White
,
R. A.
,
1994
, “
Changes in Arterial Wall Compliance After Endovascular Stenting
,”
J. Vasc. Surg.
,
19
(
5
), pp.
905
911
.10.1016/S0741-5214(94)70017-6
103.
Vernhet
,
H.
,
Demaria
,
R.
,
Juan
,
J. M.
,
Oliva-Lauraire
,
M. C.
,
Sénac
,
J. P.
, and
Dauzat
,
M.
,
2001
, “
Changes in Wall Mechanics After Endovascular Stenting in the Rabbit Aorta: Comparison of Three Stent Designs
,”
Am. J. Roentgenol.
,
176
(
3
), pp.
803
807
.10.2214/ajr.176.3.1760803
104.
Morris
,
L.
,
Stefanov
,
F.
,
Hynes
,
N.
,
Diethrich
,
E. B.
, and
Sultan
,
S.
,
2016
, “
An Experimental Evaluation of Device/Arterial Wall Compliance Mismatch for Four Stent-Graft Devices and a Multi-Layer Flow Modulator Device for the Treatment of Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
1
), pp.
44
55
.10.1016/j.ejvs.2015.07.041
105.
Nauta
,
F. J. H.
,
de Beaufort
,
H. W. L.
,
Conti
,
M.
,
Marconi
,
S.
,
Kamman
,
A. V.
,
Ferrara
,
A.
,
van Herwaarden
,
J. A.
,
Moll
,
F. L.
,
Auricchio
,
F.
, and
Trimarchi
,
S.
,
2017
, “
Impact of Thoracic Endovascular Aortic Repair on Radial Strain in an Ex Vivo Porcine Model
,”
Eur. J. Cardiothorac. Surg.
,
51
(
4
), pp.
783
789
.10.1093/ejcts/ezw393
You do not currently have access to this content.