Abstract

Accurate failure criteria play a fundamental role in biomechanical analyses of aortic wall rupture and dissection. Experimental investigations have demonstrated a significant difference of aortic wall strengths in the circumferential and axial directions. Therefore, the isotropic von Mises stress and maximum principal stress, commonly used in computational analysis of the aortic wall, are inadequate for modeling of anisotropic failure properties. In this study, we propose a novel stress-based anisotropic failure criterion with dispersed fiber orientations. In the new failure criterion, the overall failure metric is computed by using angular integration (AI) of failure metrics in all directions. Affine rotations of fiber orientations due to finite deformation are taken into account in an anisotropic hyperelastic constitutive model. To examine fitting capability of the failure criterion, a set of off-axis uniaxial tension tests were performed on aortic tissues of four porcine individuals and 18 human ascending thoracic aortic aneurysm (ATAA) patients. The dispersed fiber failure criterion demonstrates a good fitting capability with the off-axis testing data. Under simulated biaxial stress conditions, the dispersed fiber failure criterion predicts a smaller failure envelope comparing to those predicted by the traditional anisotropic criteria without fiber dispersion, which highlights the potentially important role of fiber dispersion in the failure of the aortic wall. Our results suggest that the deformation-dependent fiber orientations need to be considered when wall strength determined from uniaxial tests are used for in vivo biomechanical analysis. More investigations are needed to determine biaxial failure properties of the aortic wall.

References

1.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.10.1016/j.jbiomech.2011.11.021
2.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
(
4
), pp.
760
769
.10.1067/mva.2000.103971
3.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2007
, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
3
), pp.
693
696
.10.1016/j.jbiomech.2006.01.015
4.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
,
2009
, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031001
.10.1115/1.3005200
5.
Kazimi
,
S.
,
2001
,
Solid Mechanics
,
Tata McGraw-Hill Education
,
New York
.
6.
Mohan
,
D.
, and
Melvin
,
J. W.
,
1983
, “
Failure Properties of Passive Human Aortic Tissue—II: Biaxial Tension Tests
,”
J. Biomech.
,
16
(
1
), pp.
31
44
.10.1016/0021-9290(83)90044-1
7.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
de Tolosa
,
E. M. C.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
8.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.10.1067/mva.2002.125478
9.
SpeelmanBohra
,
L. A.
,
Bosboom
,
E. M. H.
,
Schurink
,
G. W. H.
,
van de Vosse
,
F. N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2007
, “
Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms
,”
J. Biomech. Eng
.,
129
(
1
), pp.
105
109
.10.1115/1.2401189
10.
Dorfmann
,
A.
,
Wilson
,
C.
,
Edgar
,
E.
, and
Peattie
,
R.
,
2010
, “
Evaluating Patient-Specific Abdominal Aortic Aneurysm Wall Stress Based on Flow-Induced Loading
,”
Biomech. Model. Mechanobiol.
,
9
(
2
), pp.
127
139
.10.1007/s10237-009-0163-4
11.
Pham
,
T.
,
Martin
,
C.
,
Elefteriades
,
J.
, and
Sun
,
W.
,
2013
, “
Biomechanical Characterization of Ascending Aortic Aneurysm With Concomitant Bicuspid Aortic Valve and Bovine Aortic Arch
,”
Acta Biomater.
,
9
(
8
), pp.
7927
7936
.10.1016/j.actbio.2013.04.021
12.
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Sutcliffe
,
M. P.
,
Brown
,
A. J.
,
Jing
,
Z.
,
Gillard
,
J. H.
, and
Lu
,
Q.
,
2015
, “
Layer-and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2745
2759
.10.1007/s10439-015-1323-6
13.
Kim
,
J.-H.
,
Avril
,
S.
,
Duprey
,
A.
, and
Favre
,
J.-P.
,
2012
, “
Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
841
853
.10.1007/s10237-011-0356-5
14.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.10.1115/1.4026443
15.
Derrien
,
K.
,
Fitoussi
,
J.
,
Guo
,
G.
, and
Baptiste
,
D.
,
2000
, “
Prediction of the Effective Damage Properties and Failure Properties of Nonlinear Anisotropic Discontinuous Reinforced Composites
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
2–4
), pp.
93
107
.10.1016/S0045-7825(99)00253-4
16.
Sun
,
C. T.
,
2000
, “
1.20 - Strength Analysis of Unidirectional Composites and Laminates
,”
Comprehensive Composite Materials
,
A.
Kelly
, and
C.
Zweben
, eds.,
Pergamon
,
Oxford, UK
, pp.
641
666
.
17.
Dong
,
H.
, and
Wang
,
J.
,
2015
, “
A Criterion for Failure Mode Prediction of Angle-Ply Composite Laminates Under In-Plane Tension
,”
Compos. Struct.
,
128
, pp.
234
240
.10.1016/j.compstruct.2015.03.005
18.
Dong
,
H.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2014
, “
An Improved Puck's Failure Theory for Fibre-Reinforced Composite Laminates Including the in Situ Strength Effect
,”
Compos. Sci. Technol.
,
98
, pp.
86
92
.10.1016/j.compscitech.2014.04.009
19.
Azzi
,
V.
, and
Tsai
,
S.
,
1965
, “
Anisotropic Strength of Composites
,”
Exp. Mech.
,
5
(
9
), pp.
283
288
.10.1007/BF02326292
20.
Tsai
,
S. W.
,
1965
,
Strength Characteristics of Composite Materials
,
Philco
,
Newport Beach, CA
.
21.
Hashin
,
Z.
, and
Rotem
,
A.
,
1973
, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
,
7
(
4
), pp.
448
464
.10.1177/002199837300700404
22.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
23.
Korenczuk
,
C. E.
,
Votava
,
L. E.
,
Dhume
,
R. Y.
,
Kizilski
,
S. B.
,
Brown
,
G. E.
,
Narain
,
R.
, and
Barocas
,
V. H.
,
2017
, “
Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071008
.10.1115/1.4036316
24.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
25.
Shekhonin
,
B. V.
,
Domogatsky
,
S. P.
,
Muzykantov
,
V. R.
,
Idelson
,
G. L.
, and
Rukosuev
,
V. S.
,
1985
, “
Distribution of Type I, III, IV and V Collagen in Normal and Atherosclerotic Human Arterial Wall: Immunomorphological Characteristics
,”
Collagen Relat. Res.
,
5
(
4
), pp.
355
368
.10.1016/S0174-173X(85)80024-8
26.
Finlay
,
H. M.
,
McCullough
,
L.
, and
Canham
,
P. B.
,
1995
, “
Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures
,”
J. Vasc. Res.
,
32
(
5
), pp.
301
312
.10.1159/000159104
27.
Niestrawska
,
J. A.
,
Viertler
,
C.
,
Regitnig
,
P.
,
Cohnert
,
T. U.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2016
, “
Microstructure and Mechanics of Healthy and Aneurysmatic Abdominal Aortas: Experimental Analysis and Modelling
,”
J. R. Soc. Interface
,
13
(
124
), p.
20160620
.10.1098/rsif.2016.0620
28.
Bia
,
D.
,
Pessana
,
F.
,
Armentano
,
R.
,
Pérez
,
H.
,
Graf
,
S.
,
Zócalo
,
Y.
,
Saldías
,
M.
,
Perez
,
N.
,
Alvarez
,
O.
,
Silva
,
W.
,
Machin
,
D.
,
Sueta
,
P.
,
Ferrin
,
S.
,
Acosta
,
M.
, and
Alvarez
,
I.
,
2006
, “
Cryopreservation Procedure Does Not Modify Human Carotid Homografts Mechanical Properties: An Isobaric and Dynamic Analysis
,”
Cell Tissue Banking
,
7
(
3
), pp.
183
194
.10.1007/s10561-005-0655-0
29.
Caballero
,
A.
,
Sulejmani
,
F.
,
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2017
, “
Evaluation of Transcatheter Heart Valve Biomaterials: Biomechanical Characterization of Bovine and Porcine Pericardium
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
486
494
.10.1016/j.jmbbm.2017.08.013
30.
Pokutta-Paskaleva
,
A.
,
Sulejmani
,
F.
,
DelRocini
,
M.
, and
Sun
,
W.
,
2019
, “
Comparative Mechanical, Morphological, and Microstructural Characterization of Porcine Mitral and Tricuspid Leaflets and Chordae Tendineae
,”
Acta Biomater.
,
85
, pp.
241
252
.10.1016/j.actbio.2018.12.029
31.
Sang
,
C.
,
Maiti
,
S.
,
Fortunato
,
R. N.
,
Kofler
,
J.
, and
Robertson
,
A. M.
,
2018
, “
A Uniaxial Testing Approach for Consistent Failure in Vascular Tissues
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061010
.10.1115/1.4039577
32.
Mardia
,
K. V.
, and
Jupp
,
P. E.
,
2009
,
Directional Statistics
,
Wiley
,
Hoboken, NJ
.
33.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
34.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
Berlin
.
35.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Development and Finite Element Implementation of a Nearly Incompressible Structural Constitutive Model for Artery Substitute Design
,”
ASME Paper No. SBC2008-193164
. 10.1115/SBC2008-193164
36.
Li
,
K.
, and
Holzapfel
,
G. A.
,
2019
, “
Multiscale Modeling of Fiber Recruitment and Damage With a Discrete Fiber Dispersion Method
,”
J. Mech. Phys. Solids
,
126
, pp.
226
244
.10.1016/j.jmps.2019.01.022
37.
Eskandari
,
M.
,
Arvayo
,
A. L.
, and
Levenston
,
M. E.
,
2018
, “
Mechanical Properties of the Airway Tree: Heterogeneous and Anisotropic Pseudoelastic and Viscoelastic Tissue Responses
,”
J. Appl. Physiol.
,
125
(
3
), pp.
878
888
.10.1152/japplphysiol.00090.2018
38.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2017
, “
A New Inverse Method for Estimation of In Vivo Mechanical Properties of the Aortic Wall
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
148
158
.10.1016/j.jmbbm.2017.05.001
39.
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2011
, “
Significant Differences in the Material Properties Between Aged Human and Porcine Aortic Tissues*
,”
Eur. J. Cardio-Thorac. Surg.
,
40
(
1
), pp.
28
34
.10.1016/j.ejcts.2010.08.056
40.
Martin
,
C.
,
Sun
,
W.
, and
Elefteriades
,
J.
,
2015
, “
Patient-Specific Finite Element Analysis of Ascending Aorta Aneurysms
,”
Am. J. Physiol. Heart Circ. Physiol.
,
308
(
10
), pp.
H1306
H1316
.10.1152/ajpheart.00908.2014
41.
García-Herrera
,
C. M.
,
Atienza
,
J.
,
Rojo
,
F.
,
Claes
,
E.
,
Guinea
,
G.
,
Celentano
,
D. J.
,
García-Montero
,
C.
, and
Burgos
,
R.
,
2012
, “
Mechanical Behaviour and Rupture of Normal and Pathological Human Ascending Aortic Wall
,”
Med. Biol. Eng. Comput.
,
50
(
6
), pp.
559
566
.10.1007/s11517-012-0876-x
42.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Geest
,
J. V.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
43.
Iliopoulos
,
D. C.
,
Deveja
,
R. P.
,
Kritharis
,
E. P.
,
Perrea
,
D.
,
Sionis
,
G. D.
,
Toutouzas
,
K.
,
Stefanadis
,
C.
, and
Sokolis
,
D. P.
,
2009
, “
Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Eng. Phys.
,
31
(
1
), pp.
1
9
.10.1016/j.medengphy.2008.03.002
44.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
45.
Forsell
,
C.
,
Björck
,
H. M.
,
Eriksson
,
P.
,
Franco-Cereceda
,
A.
, and
Gasser
,
T. C.
,
2014
, “
Biomechanical Properties of the Thoracic Aneurysmal Wall: Differences Between Bicuspid Aortic Valve and Tricuspid Aortic Valve Patients
,”
Ann. Thorac. Surg.
,
98
(
1
), pp.
65
71
.10.1016/j.athoracsur.2014.04.042
46.
García
,
A.
,
Peña
,
E.
,
Laborda
,
A.
,
Lostalé
,
F.
,
De Gregorio
,
M. A.
,
Doblaré
,
M.
, and
Martínez
,
M. A.
,
2011
, “
Experimental Study and Constitutive Modelling of the Passive Mechanical Properties of the Porcine Carotid Artery and Its Relation to Histological Analysis: Implications in Animal Cardiovascular Device Trials
,”
Medical Eng. Phys.
,
33
(
6
), pp.
665
676
.10.1016/j.medengphy.2011.01.016
47.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2018
, “
Estimation of In Vivo Mechanical Properties of the Aortic Wall: A Multi-Resolution Direct Search Approach
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
649
659
.10.1016/j.jmbbm.2017.10.022
48.
Liu
,
M.
,
Liang
,
L.
,
Sulejmani
,
F.
,
Lou
,
X.
,
Iannucci
,
G.
,
Chen
,
E.
,
Leshnower
,
B.
, and
Sun
,
W.
,
2019
, “
Identification of In Vivo Nonlinear Anisotropic Mechanical Properties of Ascending Thoracic Aortic Aneurysm From Patient-Specific CT Scans
,”
Sci. Rep.
,
9
(
1
), p.
12983
.10.1038/s41598-019-49438-w
49.
Duprey
,
A.
,
Trabelsi
,
O.
,
Vola
,
M.
,
Favre
,
J.-P.
, and
Avril
,
S.
,
2016
, “
Biaxial Rupture Properties of Ascending Thoracic Aortic Aneurysms
,”
Acta Biomater.
,
42
, pp.
273
285
.10.1016/j.actbio.2016.06.028
50.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Dixon
,
J. G.
,
Boughner
,
D. R.
, and
Chen
,
A.
,
1989
, “
Measurements From Light and Polarised Light Microscopy of Human Coronary Arteries Fixed at Distending Pressure
,”
Cardiovasc. Res.
,
23
(
11
), pp.
973
982
.10.1093/cvr/23.11.973
51.
Fung
,
Y-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
Berlin
.
52.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2009
, “
The Effects of Preconditioning Strain on Measured Tissue Properties
,”
J. Biomech.
,
42
(
9
), pp.
1360
1362
.10.1016/j.jbiomech.2009.03.023
53.
Carew
,
E. O.
,
Barber
,
J. E.
, and
Vesely
,
I.
,
2000
, “
Role of Preconditioning and Recovery Time in Repeated Testing of Aortic Valve Tissues: Validation Through Quasilinear Viscoelastic Theory
,”
Ann. Biomed. Eng.
,
28
(
9
), pp.
1093
1100
.10.1114/1.1310221
54.
Calvo
,
B.
,
Peña
,
E.
,
Martinez
,
M. A.
, and
Doblaré
,
M.
,
2007
, “
An Uncoupled Directional Damage Model for Fibred Biological Soft Tissues. Formulation and Computational Aspects
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2036
2057
.10.1002/nme.1825
55.
Lee
,
M.-C.
, and
Haut
,
R. C.
,
1992
, “
Strain Rate Effects on Tensile Failure Properties of the Common Carotid Artery and Jugular Veins of Ferrets
,”
J. Biomech.
,
25
(
8
), pp.
925
927
.10.1016/0021-9290(92)90232-P
56.
Polzer
,
S.
, and
Gasser
,
T. C.
,
2015
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms Based on a Novel Probabilistic Rupture Risk Index
,”
J. R. Soc. Interface
,
12
(
113
), p.
20150852
.10.1098/rsif.2015.0852
57.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.10.1007/s10237-007-0101-2
58.
Dong
,
H.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2020
, “
A Residual Stiffness-Based Model for the Fatigue Damage of Biological Soft Tissues
,”
J. Mech. Phys. Solids
,
143
, p.
104074
.10.1016/j.jmps.2020.104074
You do not currently have access to this content.