Abstract

Mechanical forces play an important role in various physiological processes, such as morphogenesis, cytokinesis, and migration. Thus, in order to illuminate mechanisms underlying these physiological processes, it is crucial to understand how cells deform and respond to external mechanical stimuli. During recent decades, the mechanical properties of cells have been studied extensively using diverse measurement techniques. A number of experimental studies have shown that cells are far from linear elastic materials. Cells exhibit a wide variety of nonlinear elastic and inelastic properties. Such complicated properties of cells are known to emerge from unique mechanical characteristics of cellular components. In this review, we introduce major cellular components that largely govern cell mechanical properties and provide brief explanations of several experimental techniques used for rheological measurements of cell mechanics. Then, we discuss the representative nonlinear elastic and inelastic properties of cells. Finally, continuum and discrete computational models of cell mechanics, which model both nonlinear elastic and inelastic properties of cells, will be described.

References

References
1.
Rozario
,
T.
, and
DeSimone
,
D. W.
,
2010
, “
The Extracellular Matrix in Development and Morphogenesis: A Dynamic View
,”
Dev. Biol.
,
341
(
1
), pp.
126
140
.10.1016/j.ydbio.2009.10.026
2.
Matthews
,
B. D.
,
Overby
,
D. R.
,
Mannix
,
R.
, and
Ingber
,
D. E.
,
2006
, “
Cellular Adaptation to Mechanical Stress: Role of Integrins, Rho, Cytoskeletal Tension and Mechanosensitive Ion Channels
,”
J. Cell Sci.
,
119
(
3
), pp.
508
518
.10.1242/jcs.02760
3.
Stamenović
,
D.
, and
Wang
,
N.
,
2011
, “
Stress Transmission Within the Cell
,”
Compr. Physiol.
,
1
(
1
), pp.
499
524
.10.1002/cphy.c100019
4.
Landau
,
L. D.
,
Kosevich
,
A. M.
,
Pitaevskii
,
L. P.
, and
Lifshitz
,
E. M.
,
1986
,
Theory of Elasticity
,
Butterworth-Heinemann
,
Oxford, UK
.
5.
Chu
,
Y.-S.
,
Dufour
,
S.
,
Thiery
,
J. P.
,
Perez
,
E.
, and
Pincet
,
F.
,
2005
, “
Johnson-Kendall-Roberts Theory Applied to Living Cells
,”
Phys. Rev. Lett.
,
94
(
2
), p.
028102
.10.1103/PhysRevLett.94.028102
6.
Fernández
,
P.
,
Pullarkat
,
P. A.
, and
Ott
,
A.
,
2006
, “
A Master Relation Defines the Nonlinear Viscoelasticity of Single Fibroblasts
,”
Biophys. J.
,
90
(
10
), pp.
3796
3805
.10.1529/biophysj.105.072215
7.
Krishnan
,
R.
,
Park
,
C. Y.
,
Lin
,
Y.-C.
,
Mead
,
J.
,
Jaspers
,
R. T.
,
Trepat
,
X.
,
Lenormand
,
G.
,
Tambe
,
D.
,
Smolensky
,
A. V.
,
Knoll
,
A. H.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2009
, “
Reinforcement Versus Fluidization in Cytoskeletal Mechanoresponsiveness
,”
PLoS One
,
4
(
5
), p.
e5486
.10.1371/journal.pone.0005486
8.
Latorre
,
E.
,
Kale
,
S.
,
Casares
,
L.
,
Gomez-Gonzalez
,
M.
,
Uroz
,
M.
,
Valon
,
L.
,
Nair
,
R. V.
,
Garreta
,
E.
,
Montserrat
,
N.
,
Del Campo
,
A.
,
Ladoux
,
B.
,
Arroyo
,
M.
, and
Trepat
,
X.
,
2018
, “
Active Superelasticity in Three-Dimensional Epithelia of Controlled Shape
,”
Nature
,
563
(
7730
), pp.
203
208
.10.1038/s41586-018-0671-4
9.
Bausch
,
A. R.
,
Moller
,
W.
, and
Sackmann
,
E.
,
1999
, “
Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers
,”
Biophys. J.
,
76
(
1
), pp.
573
579
.10.1016/S0006-3495(99)77225-5
10.
Thoumine
,
O.
, and
Ott
,
A.
,
1997
, “
Time Scale Dependent Viscoelastic and Contractile Regimes in Fibroblasts Probed by Microplate Manipulation
,”
J. Cell Sci.
,
110
(
17
), pp.
2109
2116
.https://www.ncbi.nlm.nih.gov/pubmed/9378761
11.
Maksym
,
G. N.
,
Fabry
,
B.
,
Butler
,
J. P.
,
Navajas
,
D.
,
Tschumperlin
,
D. J.
,
Laporte
,
J. D.
, and
Fredberg
,
J. J.
,
2000
, “
Mechanical Properties of Cultured Human Airway Smooth Muscle Cells From 0.05 to 0.4 Hz
,”
J. Appl. Physiol.
,
89
(
4
), pp.
1619
1632
.10.1152/jappl.2000.89.4.1619
12.
Heinrich
,
D.
, and
Sackmann
,
E.
,
2006
, “
Active Mechanical Stabilization of the Viscoplastic Intracellular Space of Dictyostelia Cells by Microtubule–Actin Crosstalk
,”
Acta Biomater.
,
2
(
6
), pp.
619
631
.10.1016/j.actbio.2006.05.014
13.
Mitchison
,
T.
,
Charras
,
G.
, and
Mahadevan
,
L.
,
2008
, “
Implications of a Poroelastic Cytoplasm for the Dynamics of Animal Cell Shape
,”
Semin. Cell Dev. Biol.
,
19
(
3
), pp.
215
223
.10.1016/j.semcdb.2008.01.008
14.
Friedl
,
P.
,
Wolf
,
K.
, and
Lammerding
,
J.
,
2011
, “
Nuclear Mechanics During Cell Migration
,”
Curr. Opin. Cell Biol.
,
23
(
1
), pp.
55
64
.10.1016/j.ceb.2010.10.015
15.
Icard-Arcizet
,
D.
,
Cardoso
,
O.
,
Richert
,
A.
, and
Hénon
,
S.
,
2008
, “
Cell Stiffening in Response to External Stress is Correlated to Actin Recruitment
,”
Biophys. J.
,
94
(
7
), pp.
2906
2913
.10.1529/biophysj.107.118265
16.
Pajic-Lijakovic
,
I.
, and
Milivojevic
,
M.
,
2017
, “
Viscoelasticity of Multicellular Surfaces
,”
J. Biomech.
,
60
, pp.
1
8
.10.1016/j.jbiomech.2017.06.035
17.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
Faseb J.
,
20
(
7
), pp.
811
827
.10.1096/fj.05-5424rev
18.
Fletcher
,
D. A.
, and
Mullins
,
R. D.
,
2010
, “
Cell Mechanics and the Cytoskeleton
,”
Nature
,
463
(
7280
), pp.
485
492
.10.1038/nature08908
19.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J.-J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
187
.10.1016/S0021-9290(01)00201-9
20.
Zhu
,
C.
,
Bao
,
G.
, and
Wang
,
N.
,
2000
, “
Cell Mechanics: Mechanical Response, Cell Adhesion, and Molecular Deformation
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
189
226
.10.1146/annurev.bioeng.2.1.189
21.
Lulevich
,
V.
,
Zink
,
T.
,
Chen
,
H.-Y.
,
Liu
,
F.-T.
, and
Liu
,
G-y.
,
2006
, “
Cell Mechanics Using Atomic Force Microscopy-Based Single-Cell Compression
,”
Langmuir
,
22
(
19
), pp.
8151
8155
.10.1021/la060561p
22.
Chaudhuri
,
O.
,
Parekh
,
S. H.
, and
Fletcher
,
D. A.
,
2007
, “
Reversible Stress Softening of Actin Networks
,”
Nature
,
445
(
7125
), pp.
295
298
.10.1038/nature05459
23.
Schopferer
,
M.
,
Bär
,
H.
,
Hochstein
,
B.
,
Sharma
,
S.
,
Mücke
,
N.
,
Herrmann
,
H.
, and
Willenbacher
,
N.
,
2009
, “
Desmin and Vimentin Intermediate Filament Networks: Their Viscoelastic Properties Investigated by Mechanical Rheometry
,”
J. Mol. Biol.
,
388
(
1
), pp.
133
143
.10.1016/j.jmb.2009.03.005
24.
Blanchoin
,
L.
,
Boujemaa-Paterski
,
R.
,
Sykes
,
C.
, and
Plastino
,
J.
,
2014
, “
Actin Dynamics, Architecture, and Mechanics in Cell Motility
,”
Physiol. Rev.
,
94
(
1
), pp.
235
263
.10.1152/physrev.00018.2013
25.
Dos Remedios
,
C.
,
Chhabra
,
D.
,
Kekic
,
M.
,
Dedova
,
I.
,
Tsubakihara
,
M.
,
Berry
,
D.
, and
Nosworthy
,
N.
,
2003
, “
Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments
,”
Physiol. Rev.
,
83
(
2
), pp.
433
473
.10.1152/physrev.00026.2002
26.
Gm
,
C.
,
2000
,
The Cell: A Molecular Approach
, 2nd ed.,
Sinauer Associates
,
Sunderland, MA
.
27.
Isambert
,
H.
,
Venier
,
P.
,
Maggs
,
A. C.
,
Fattoum
,
A.
,
Kassab
,
R.
,
Pantaloni
,
D.
, and
Carlier
,
M.-F.
,
1995
, “
Flexibility of Actin Filaments Derived From Thermal Fluctuations. Effect of Bound Nucleotide, Phalloidin, and Muscle Regulatory Proteins
,”
J. Biol. Chem.
,
270
(
19
), pp.
11437
11444
.10.1074/jbc.270.19.11437
28.
Welch
,
M. D.
,
DePace
,
A. H.
,
Verma
,
S.
,
Iwamatsu
,
A.
, and
Mitchison
,
T. J.
,
1997
, “
The Human Arp2/3 Complex is Composed of Evolutionarily Conserved Subunits and is Localized to Cellular Regions of Dynamic Actin Filament Assembly
,”
J. Cell Biol.
,
138
(
2
), pp.
375
384
.10.1083/jcb.138.2.375
29.
Clarke
,
M.
, and
Spudich
,
J. A.
,
1977
, “
Nonmuscle Contractile Proteins: The Role of Actin and Myosin in Cell Motility and Shape Determination
,”
Annu. Rev. Biochem.
,
46
(
1
), pp.
797
822
.10.1146/annurev.bi.46.070177.004053
30.
Ishihara
,
K.
,
Nguyen
,
P. A.
,
Groen
,
A. C.
,
Field
,
C. M.
, and
Mitchison
,
T. J.
,
2014
, “
Microtubule Nucleation Remote From Centrosomes May Explain How Asters Span Large Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
50
), pp.
17715
17722
.10.1073/pnas.1418796111
31.
Walczak
,
C. E.
, and
Heald
,
R.
,
2008
, “
Mechanisms of Mitotic Spindle Assembly and Function
,”
Int. Rev. Cytol.
,
265
, pp.
111
158
.10.1016/S0074-7696(07)65003-7
32.
Etienne-Manneville
,
S.
,
2013
, “
Microtubules in Cell Migration
,”
Annu. Rev. Cell. Dev. Biol.
,
29
(
1
), pp.
471
499
.10.1146/annurev-cellbio-101011-155711
33.
Belmont
,
L. D.
, and
Mitchison
,
T. J.
,
1996
, “
Identification of a Protein That Interacts With Tubulin Dimers and Increases the Catastrophe Rate of Microtubules
,”
Cell
,
84
(
4
), pp.
623
631
.10.1016/S0092-8674(00)81037-5
34.
Pilhofer
,
M.
,
Ladinsky
,
M. S.
,
McDowall
,
A. W.
,
Petroni
,
G.
, and
Jensen
,
G. J.
,
2011
, “
Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton
,”
PLoS Biol.
,
9
(
12
), p.
e1001213
.10.1371/journal.pbio.1001213
35.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
,
1993
, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
,
120
(
4
), pp.
923
934
.10.1083/jcb.120.4.923
36.
Brangwynne
,
C. P.
,
MacKintosh
,
F. C.
,
Kumar
,
S.
,
Geisse
,
N. A.
,
Talbot
,
J.
,
Mahadevan
,
L.
,
Parker
,
K. K.
,
Ingber
,
D. E.
, and
Weitz
,
D. A.
,
2006
, “
Microtubules Can Bear Enhanced Compressive Loads in Living Cells Because of Lateral Reinforcement
,”
J. Cell Biol.
,
173
(
5
), pp.
733
741
.10.1083/jcb.200601060
37.
Yamauchi
,
P.
, and
Purich
,
D.
,
1993
, “
Microtubule-Associated Protein Interactions With Actin Filaments: Evidence for Differential Behavior of Neuronal Map-2 and Tau in the Presence of Phosphatidylinositol
,”
Biochem. Biophys. Res. Commun.
,
190
(
3
), pp.
710
715
.10.1006/bbrc.1993.1107
38.
Svitkina
,
T. M.
,
Verkhovsky
,
A. B.
, and
Borisy
,
G. G.
,
1996
, “
Plectin Sidearms Mediate Interaction of Intermediate Filaments With Microtubules and Other Components of the Cytoskeleton
,”
J. Cell Biol.
,
135
(
4
), pp.
991
1007
.10.1083/jcb.135.4.991
39.
Eng
,
D. L.
, and
Eng
,
L. F.
,
2009
, “
Intermediate Filaments
,”
Encyclopedia of Neuroscience
,
L. R.
Squire
, ed.,
Academic Press
, Cambridge, MA, pp.
173
178
.
40.
Lazarides
,
E.
,
1980
, “
Intermediate Filaments as Mechanical Integrators of Cellular Space
,”
Nature
,
283
(
5744
), pp.
249
255
.10.1038/283249a0
41.
Herrmann
,
H.
,
Strelkov
,
S. V.
,
Burkhard
,
P.
, and
Aebi
,
U.
,
2009
, “
Intermediate Filaments: Primary Determinants of Cell Architecture and Plasticity
,”
J. Clin. Invest.
,
119
(
7
), pp.
1772
1783
.10.1172/JCI38214
42.
Paulin
,
D.
, and
Li
,
Z.
,
2004
, “
Desmin: A Major Intermediate Filament Protein Essential for the Structural Integrity and Function of Muscle
,”
Exp. Cell Res.
,
301
(
1
), pp.
1
7
.10.1016/j.yexcr.2004.08.004
43.
Charrier
,
E. E.
, and
Janmey
,
P. A.
,
2016
, “
Mechanical Properties of Intermediate Filament Proteins
,”
Methods. Enzymol.
,
568
, pp.
35
57
.10.1016/bs.mie.2015.09.009
44.
Block
,
J.
,
Schroeder
,
V.
,
Pawelzyk
,
P.
,
Willenbacher
,
N.
, and
Köster
,
S.
,
2015
, “
Physical Properties of Cytoplasmic Intermediate Filaments
,”
Biochim. Biophys. Acta.
,
1853
(
11
), pp.
3053
3064
.10.1016/j.bbamcr.2015.05.009
45.
Broedersz
,
C. P.
, and
MacKintosh
,
F. C.
,
2014
, “
Modeling Semiflexible Polymer Networks
,”
Rev. Mod. Phys.
,
86
(
3
), pp.
995
1036
.10.1103/RevModPhys.86.995
46.
Block
,
J.
,
Witt
,
H.
,
Candelli
,
A.
,
Peterman
,
E. J.
,
Wuite
,
G. J.
,
Janshoff
,
A.
, and
Köster
,
S.
,
2017
, “
Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain
,”
Phys. Rev. Lett.
,
118
(
4
), p.
048101
.10.1103/PhysRevLett.118.048101
47.
Janmey
,
P. A.
,
Euteneuer
,
U.
,
Traub
,
P.
, and
Schliwa
,
M.
,
1991
, “
Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks
,”
J. Cell Biol.
,
113
(
1
), pp.
155
160
.10.1083/jcb.113.1.155
48.
Dahl
,
K. N.
, and
Kalinowski
,
A.
,
2011
, “
Nucleoskeleton Mechanics at a Glance
,”
J. Cell Sci.
,
124
(
5
), pp.
675
678
.10.1242/jcs.069096
49.
Gruenbaum
,
Y.
,
Margalit
,
A.
,
Goldman
,
R. D.
,
Shumaker
,
D. K.
, and
Wilson
,
K. L.
,
2005
, “
The Nuclear Lamina Comes of Age
,”
Nat. Rev. Mol. Cell Biol.
,
6
(
1
), pp.
21
31
.10.1038/nrm1550
50.
Lammerding
,
J.
,
Schulze
,
P. C.
,
Takahashi
,
T.
,
Kozlov
,
S.
,
Sullivan
,
T.
,
Kamm
,
R. D.
,
Stewart
,
C. L.
, and
Lee
,
R. T.
,
2004
, “
Lamin a/C Deficiency Causes Defective Nuclear Mechanics and Mechanotransduction
,”
J. Clin. Invest.
,
113
(
3
), pp.
370
378
.10.1172/JCI200419670
51.
Wang
,
N.
,
Tytell
,
J. D.
, and
Ingber
,
D. E.
,
2009
, “
Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
75
82
.10.1038/nrm2594
52.
Desprat
,
N.
,
Guiroy
,
A.
, and
Asnacios
,
A.
,
2006
, “
Microplates-Based Rheometer for a Single Living Cell
,”
Rev. Sci. Instrum.
,
77
(
5
), p.
055111
.10.1063/1.2202921
53.
Abramovitch
,
D. Y.
,
Andersson
,
S. B.
,
Pao
,
L. Y.
, and
Schitter
,
G.
, “
A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes
,”
Proceedings of American Control Conference
, New York, July 9–13, pp.
965
979
.10.1109/ACC.2007.4282300
54.
Canetta
,
E.
,
Duperray
,
A.
,
Leyrat
,
A.
, and
Verdier
,
C.
,
2005
, “
Measuring Cell Viscoelastic Properties Using a Force-Spectrometer: Influence of Protein-Cytoplasm Interactions
,”
Biorheology
,
42
(
5
), pp.
321
333
.https://www.ncbi.nlm.nih.gov/pubmed/16308464
55.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
571
579
.10.1016/j.joca.2005.12.003
56.
Sliogeryte
,
K.
,
Botto
,
L.
,
Lee
,
D. A.
, and
Knight
,
M. M.
,
2016
, “
Chondrocyte Dedifferentiation Increases Cell Stiffness by Strengthening Membrane-Actin Adhesion
,”
Osteoarthritis Cartilage
,
24
(
5
), pp.
912
920
.10.1016/j.joca.2015.12.007
57.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.10.1016/S0021-9290(99)00175-X
58.
Guillou
,
L.
,
Dahl
,
J. B.
,
Lin
,
J. G.
,
Barakat
,
A. I.
,
Husson
,
J.
,
Muller
,
S. J.
, and
Kumar
,
S.
,
2016
, “
Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device
,”
Biophys. J.
,
111
(
9
), pp.
2039
2050
.10.1016/j.bpj.2016.09.034
59.
Hu
,
S.
,
Yang
,
C.
,
Hu
,
D.
, and
Lam
,
R. H. W.
,
2017
, “
Microfluidic Biosensing of Viscoelastic Properties of Normal and Cancerous Human Breast Cells
,” Proceedings of IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (
NEMS
), Los Angeles, CA, Apr. 9–12, pp.
90
95
.10.1109/NEMS.2017.8016981
60.
Ward
,
K. A.
,
Li
,
W. I.
,
Zimmer
,
S.
, and
Davis
,
T.
,
1991
, “
Viscoelastic Properties of Transformed Cells: Role in Tumor Cell Progression and Metastasis Formation
,”
Biorheology
,
28
(
3–4
), pp.
301
313
.10.3233/BIR-1991-283-419
61.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
,
2001
, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
,
81
(
2
), pp.
767
784
.10.1016/S0006-3495(01)75740-2
62.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
,
2003
, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2259
2280
.10.1016/j.jmps.2003.09.019
63.
Korobtsov
,
A.
,
Kotova
,
S.
,
Losevsky
,
N.
,
Mayorova
,
A.
,
Patlan
,
V.
,
Timchenko
,
E.
,
Lysov
,
N.
, and
Zarubina
,
E.
,
2012
, “
Optical Tweezers Technique for the Study of Red Blood Cells Deformation Ability
,”
Laser Phys.
,
22
(
7
), pp.
1265
1270
.10.1134/S1054660X12070067
64.
Moura
,
D. S.
,
Silva
,
D. C.
,
Williams
,
A. J.
,
Bezerra
,
M. A.
,
Fontes
,
A.
, and
de Araujo
,
R. E.
,
2015
, “
Automatic Real Time Evaluation of Red Blood Cell Elasticity by Optical Tweezers
,”
Rev. Sci. Instrum.
,
86
(
5
), p.
053702
.10.1063/1.4919010
65.
Zhang
,
H.
, and
Liu
,
K. K.
,
2008
, “
Optical Tweezers for Single Cells
,”
J. R. Soc. Interface
,
5
(
24
), pp.
671
690
.10.1098/rsif.2008.0052
66.
Nishizawa
,
K.
,
Bremerich
,
M.
,
Ayade
,
H.
,
Schmidt
,
C. F.
,
Ariga
,
T.
, and
Mizuno
,
D.
,
2017
, “
Feedback-Tracking Microrheology in Living Cells
,”
Sci. Adv.
,
3
(
9
), p.
e1700318
.10.1126/sciadv.1700318
67.
Ayala
,
Y. A.
,
Pontes
,
B.
,
Ether
,
D. S.
,
Pires
,
L. B.
,
Araujo
,
G. R.
,
Frases
,
S.
,
Romao
,
L. F.
,
Farina
,
M.
,
Moura-Neto
,
V.
,
Viana
,
N. B.
, and
Nussenzveig
,
H. M.
,
2016
, “
Rheological Properties of Cells Measured by Optical Tweezers
,”
BMC Biophys.
,
9
(
1
), p.
5
.10.1186/s13628-016-0031-4
68.
Rodriguez-Sevilla
,
P.
,
Zhang
,
Y. H.
,
de Sousa
,
N.
,
Marques
,
M. I.
,
Sanz-Rodriguez
,
F.
,
Jaque
,
D.
,
Liu
,
X. G.
, and
Haro-Gonzalez
,
P.
,
2017
, “
Microrheometric Upconversion-Based Techniques for Intracellular Viscosity Measurements
,”
Proceedings of Optical Trapping and Optical Micromanipulation XIV
, San Diego, CA, Aug. 6–10.10.1117/12.2275944
69.
Valberg
,
P. A.
, and
Feldman
,
H. A.
,
1987
, “
Magnetic Particle Motions Within Living Cells. Measurement of Cytoplasmic Viscosity and Motile Activity
,”
Biophys. J.
,
52
(
4
), pp.
551
561
.10.1016/S0006-3495(87)83244-7
70.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
, and
Fredberg
,
J. J.
,
2001
, “
Scaling the Microrheology of Living Cells
,”
Phys. Rev. Lett.
,
87
(
14
), p.
148102
.10.1103/PhysRevLett.87.148102
71.
Kollmannsberger
,
P.
, and
Fabry
,
B.
,
2007
, “
High-Force Magnetic Tweezers With Force Feedback for Biological Applications
,”
Rev. Sci. Instrum.
,
78
(
11
), p.
114301
.10.1063/1.2804771
72.
Grevesse
,
T.
,
Dabiri
,
B. E.
,
Parker
,
K. K.
, and
Gabriele
,
S.
,
2015
, “
Opposite Rheological Properties of Neuronal Microcompartments Predict Axonal Vulnerability in Brain Injury
,”
Sci. Rep.
,
5
, p.
9475
.10.1038/srep09475
73.
Faraudo
,
J.
,
Andreu
,
J. S.
, and
Camacho
,
J.
,
2013
, “
Understanding Diluted Dispersions of Superparamagnetic Particles Under Strong Magnetic Fields: A Review of Concepts, Theory and Simulations
,”
Soft Matter
,
9
(
29
), pp.
6654
6664
.10.1039/c3sm00132f
74.
Berret
,
J. F.
,
2016
, “
Local Viscoelasticity of Living Cells Measured by Rotational Magnetic Spectroscopy
,”
Nat. Commun.
,
7
, p.
10134
.10.1038/ncomms10134
75.
Liu
,
J.
,
Gardel
,
M. L.
,
Kroy
,
K.
,
Frey
,
E.
,
Hoffman
,
B. D.
,
Crocker
,
J. C.
,
Bausch
,
A. R.
, and
Weitz
,
D. A.
,
2006
, “
Microrheology Probes Length Scale Dependent Rheology
,”
Phys. Rev. Lett.
,
96
(
11
), p.
118104
.10.1103/PhysRevLett.96.118104
76.
Mizuno
,
D.
,
Tardin
,
C.
,
Schmidt
,
C. F.
, and
Mackintosh
,
F. C.
,
2007
, “
Nonequilibrium Mechanics of Active Cytoskeletal Networks
,”
Science
,
315
(
5810
), pp.
370
373
.10.1126/science.1134404
77.
Crocker
,
J. C.
, and
Hoffman
,
B. D.
,
2007
, “
Multiple-Particle Tracking and Two-Point Microrheology in Cells
,”
Methods Cell Biol.
,
83
, pp.
141
178
.10.1016/S0091-679X(07)83007-X
78.
Lo
,
C.-M.
,
Wang
,
H.-B.
,
Dembo
,
M.
, and
Wang
,
Y-L.
,
2000
, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.10.1016/S0006-3495(00)76279-5
79.
Dembo
,
M.
, and
Wang
,
Y.-L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.10.1016/S0006-3495(99)77386-8
80.
Glazier
,
R.
,
Brockman
,
J. M.
,
Bartle
,
E.
,
Mattheyses
,
A. L.
,
Destaing
,
O.
, and
Salaita
,
K.
,
2019
, “
DNA Mechanotechnology Reveals That Integrin Receptors Apply pN Forces in Podosomes on Fluid Substrates
,”
Nat. Commun.
,
10
(
1
), pp.
1
13
.10.1038/s41467-019-12304-4
81.
Zhang
,
Y.
,
Ge
,
C.
,
Zhu
,
C.
, and
Salaita
,
K.
,
2014
, “
DNA-Based Digital Tension Probes Reveal Integrin Forces During Early Cell Adhesion
,”
Nat. Commun.
,
5
(
1
), pp.
1
10
.10.1038/ncomms6167
82.
Dutta
,
P. K.
,
Zhang
,
Y.
,
Blanchard
,
A. T.
,
Ge
,
C.
,
Rushdi
,
M.
,
Weiss
,
K.
,
Zhu
,
C.
,
Ke
,
Y.
, and
Salaita
,
K.
,
2018
, “
Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces
,”
Nano Lett.
,
18
(
8
), pp.
4803
4811
.10.1021/acs.nanolett.8b01374
83.
Blanchard
,
A. T.
, and
Salaita
,
K.
,
2019
, “
Emerging Uses of DNA Mechanical Devices
,”
Science
,
365
(
6458
), pp.
1080
1081
.10.1126/science.aax3343
84.
Park
,
S.-J.
,
Goodman
,
M. B.
, and
Pruitt
,
B. L.
,
2007
, “
Analysis of Nematode Mechanics by Piezoresistive Displacement Clamp
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
44
), pp.
17376
17381
.10.1073/pnas.0702138104
85.
Roca-Cusachs
,
P.
,
Conte
,
V.
, and
Trepat
,
X.
,
2017
, “
Quantifying Forces in Cell Biology
,”
Nat. Cell Biol.
,
19
(
7
), pp.
742
751
.10.1038/ncb3564
86.
Shi
,
Z.
,
Graber
,
Z. T.
,
Baumgart
,
T.
,
Stone
,
H. A.
, and
Cohen
,
A. E.
,
2018
, “
Cell Membranes Resist Flow
,”
Cell
,
175
(
7
), pp.
1769
1779
.10.1016/j.cell.2018.09.054
87.
Taylor
,
R. E.
,
Mukundan
,
V.
, and
Pruitt
,
B. L.
,
2011
, “
Tools for Studying Biomechanical Interactions in Cells
,”
Mechanobiology of Cell-Cell and Cell-Matrix Interactions
,
A.
Wagoner Johnson
, and
B. A. C.
Harley
, eds.,
Springer US
,
Boston, MA
, pp.
233
265
.
88.
Eyckmans
,
J.
,
Boudou
,
T.
,
Yu
,
X.
, and
Chen
,
C. S.
,
2011
, “
A Hitchhiker's Guide to Mechanobiology
,”
Dev. Cell
,
21
(
1
), pp.
35
47
.10.1016/j.devcel.2011.06.015
89.
Mohammed
,
D.
,
Versaevel
,
M.
,
Bruyere
,
C.
,
Alaimo
,
L.
,
Luciano
,
M.
,
Vercruysse
,
E.
,
Proces
,
A.
, and
Gabriele
,
S.
,
2019
, “
Innovative Tools for Mechanobiology: Unraveling Outside-in and Inside-Out Mechanotransduction
,”
Front. Bioeng. Biotechnol.
,
7
, p.
162
.10.3389/fbioe.2019.00162
90.
Basoli
,
F.
,
Giannitelli
,
S. M.
,
Gori
,
M.
,
Mozetic
,
P.
,
Bonfanti
,
A.
,
Trombetta
,
M.
, and
Rainer
,
A.
,
2018
, “
Biomechanical Characterization at the Cell Scale: Present and Prospects
,”
Front. Physiol.
,
9
, pp.
1449
1449
.10.3389/fphys.2018.01449
91.
Kim
,
D. H.
,
Wong
,
P. K.
,
Park
,
J.
,
Levchenko
,
A.
, and
Sun
,
Y.
,
2009
, “
Microengineered Platforms for Cell Mechanobiology
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
203
233
.10.1146/annurev-bioeng-061008-124915
92.
Chen
,
H.
,
Bernstein
,
B. W.
, and
Bamburg
,
J. R.
,
2000
, “
Regulating Actin-Filament Dynamics In Vivo
,”
Trends Biochem. Sci.
,
25
(
1
), pp.
19
23
.10.1016/S0968-0004(99)01511-X
93.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
94.
Lieleg
,
O.
,
Schmoller
,
K. M.
,
Claessens
,
M. M.
, and
Bausch
,
A. R.
,
2009
, “
Cytoskeletal Polymer Networks: Viscoelastic Properties Are Determined by the Microscopic Interaction Potential of Cross-Links
,”
Biophys. J.
,
96
(
11
), pp.
4725
4732
.10.1016/j.bpj.2009.03.038
95.
Lieleg
,
O.
,
Kayser
,
J.
,
Brambilla
,
G.
,
Cipelletti
,
L.
, and
Bausch
,
A. R.
,
2011
, “
Slow Dynamics and Internal Stress Relaxation in Bundled Cytoskeletal Networks
,”
Nat. Mater.
,
10
(
3
), pp.
236
242
.10.1038/nmat2939
96.
Lieleg
,
O.
, and
Bausch
,
A. R.
,
2007
, “
Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks
,”
Phys. Rev. Lett.
,
99
(
15
), p.
158105
.10.1103/PhysRevLett.99.158105
97.
Ehrlicher
,
A. J.
,
Krishnan
,
R.
,
Guo
,
M.
,
Bidan
,
C. M.
,
Weitz
,
D. A.
, and
Pollak
,
M. R.
,
2015
, “
Alpha-Actinin Binding Kinetics Modulate Cellular Dynamics and Force Generation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
21
), pp.
6619
6624
.10.1073/pnas.1505652112
98.
Moeendarbary
,
E.
,
Valon
,
L.
,
Fritzsche
,
M.
,
Harris
,
A. R.
,
Moulding
,
D. A.
,
Thrasher
,
A. J.
,
Stride
,
E.
,
Mahadevan
,
L.
, and
Charras
,
G. T.
,
2013
, “
The Cytoplasm of Living Cells Behaves as a Poroelastic Material
,”
Nat. Mater.
,
12
(
3
), pp.
253
261
.10.1038/nmat3517
99.
Block
,
J.
,
Witt
,
H.
,
Candelli
,
A.
,
Danes
,
J. C.
,
Peterman
,
E. J. G.
,
Wuite
,
G. J. L.
,
Janshoff
,
A.
, and
Koster
,
S.
,
2018
, “
Viscoelastic Properties of Vimentin Originate From Nonequilibrium Conformational Changes
,”
Sci. Adv.
,
4
(
6
), p.
eaat1161
.10.1126/sciadv.aat1161
100.
Fudge
,
D.
,
Russell
,
D.
,
Beriault
,
D.
,
Moore
,
W.
,
Lane
,
E. B.
, and
Vogl
,
A. W.
,
2008
, “
The Intermediate Filament Network in Cultured Human Keratinocytes is Remarkably Extensible and Resilient
,”
PLoS One
,
3
(
6
), p.
e2327
.10.1371/journal.pone.0002327
101.
Hu
,
J.
,
Li
,
Y.
,
Hao
,
Y.
,
Zheng
,
T.
,
Gupta
,
S. K.
,
Parada
,
G. A.
,
Wu
,
H.
,
Lin
,
S.
,
Wang
,
S.
,
Zhao
,
X.
,
Goldman
,
R. D.
,
Cai
,
S.
, and
Guo
,
M.
,
2019
, “
High Stretchability, Strength, and Toughness of Living Cells Enabled by Hyperelastic Vimentin Intermediate Filaments
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
35
), pp.
17175
17180
.10.1073/pnas.1903890116
102.
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2008
, “
Contribution of Actin Filaments and Microtubules to Quasi-In Situ Tensile Properties and Internal Force Balance of Cultured Smooth Muscle Cells on a Substrate
,”
Am. J. Physiol. Cell Physiol.
,
295
(
6
), pp.
C1569
C1578
.10.1152/ajpcell.00098.2008
103.
Lautenschläger
,
F.
,
Paschke
,
S.
,
Schinkinger
,
S.
,
Bruel
,
A.
,
Beil
,
M.
, and
Guck
,
J.
,
2009
, “
The Regulatory Role of Cell Mechanics for Migration of Differentiating Myeloid Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
37
), pp.
15696
15701
.10.1073/pnas.0811261106
104.
Stephens
,
A. D.
,
Banigan
,
E. J.
,
Adam
,
S. A.
,
Goldman
,
R. D.
, and
Marko
,
J. F.
,
2017
, “
Chromatin and Lamin a Determine Two Different Mechanical Response Regimes of the Cell Nucleus
,”
Mol. Biol. Cell
,
28
(
14
), pp.
1984
1996
.10.1091/mbc.e16-09-0653
105.
Dahl
,
K. N.
,
Kahn
,
S. M.
,
Wilson
,
K. L.
, and
Discher
,
D. E.
,
2004
, “
The Nuclear Envelope Lamina Network Has Elasticity and a Compressibility Limit Suggestive of a Molecular Shock Absorber
,”
J. Cell Sci.
,
117
(
20
), pp.
4779
4786
.10.1242/jcs.01357
106.
Swift
,
J.
,
Ivanovska
,
I. L.
,
Buxboim
,
A.
,
Harada
,
T.
,
Dingal
,
P. C. D. P.
,
Pinter
,
J.
,
Pajerowski
,
J. D.
,
Spinler
,
K. R.
,
Shin
,
J.-W.
,
Tewari
,
M.
,
Rehfeldt
,
F.
,
Speicher
,
D. W.
, and
Discher
,
D. E.
,
2013
, “
Nuclear Lamin-A Scales With Tissue Stiffness and Enhances Matrix-Directed Differentiation
,”
Science
,
341
(
6149
), pp.
1240104
1240104
.10.1126/science.1240104
107.
Pajerowski
,
J. D.
,
Dahl
,
K. N.
,
Zhong
,
F. L.
,
Sammak
,
P. J.
, and
Discher
,
D. E.
,
2007
, “
Physical Plasticity of the Nucleus in Stem Cell Differentiation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
40
), pp.
15619
15624
.10.1073/pnas.0702576104
108.
Fernandez
,
P.
, and
Ott
,
A.
,
2008
, “
Single Cell Mechanics: Stress Stiffening and Kinematic Hardening
,”
Phys. Rev. Lett.
,
100
(
23
), p.
238102
.10.1103/PhysRevLett.100.238102
109.
Kollmannsberger
,
P.
,
Mierke
,
C. T.
, and
Fabry
,
B.
,
2011
, “
Nonlinear Viscoelasticity of Adherent Cells is Controlled by Cytoskeletal Tension
,”
Soft Matter
,
7
(
7
), pp.
3127
3132
.10.1039/C0SM00833H
110.
Sousa
,
D.
,
Cammarato
,
A.
,
Jang
,
K.
,
Graceffa
,
P.
,
Tobacman
,
L. S.
,
Li
,
X. E.
, and
Lehman
,
W.
,
2010
, “
Electron Microscopy and Persistence Length Analysis of Semi-Rigid Smooth Muscle Tropomyosin Strands
,”
Biophys. J.
,
99
(
3
), pp.
862
868
.10.1016/j.bpj.2010.05.004
111.
Gardel
,
M.
,
Shin
,
J. H.
,
MacKintosh
,
F.
,
Mahadevan
,
L.
,
Matsudaira
,
P.
, and
Weitz
,
D.
,
2004
, “
Elastic Behavior of Cross-Linked and Bundled Actin Networks
,”
Science
,
304
(
5675
), pp.
1301
1305
.10.1126/science.1095087
112.
Xu
,
J.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2000
, “
Strain Hardening of Actin Filament Networks. Regulation by the Dynamic Cross-Linking Protein Alpha-Actinin
,”
J. Biol. Chem.
,
275
(
46
), pp.
35886
35892
.10.1074/jbc.M002377200
113.
Gurmessa
,
B.
,
Ricketts
,
S.
, and
Robertson-Anderson
,
R. M.
,
2017
, “
Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation
,”
Biophys. J.
,
113
(
7
), pp.
1540
1550
.10.1016/j.bpj.2017.01.012
114.
Chen
,
P.
, and
Shenoy
,
V. B.
,
2011
, “
Strain Stiffening Induced by Molecular Motors in Active Crosslinked Biopolymer Networks
,”
Soft Matter
,
7
(
2
), pp.
355
358
.10.1039/C0SM00908C
115.
Koenderink
,
G. H.
,
Dogic
,
Z.
,
Nakamura
,
F.
,
Bendix
,
P. M.
,
MacKintosh
,
F. C.
,
Hartwig
,
J. H.
,
Stossel
,
T. P.
, and
Weitz
,
D. A.
,
2009
, “
An Active Biopolymer Network Controlled by Molecular Motors
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
36
), pp.
15192
15197
.10.1073/pnas.0903974106
116.
Gardel
,
M. L.
,
Nakamura
,
F.
,
Hartwig
,
J. H.
,
Crocker
,
J. C.
,
Stossel
,
T. P.
, and
Weitz
,
D. A.
,
2006
, “
Prestressed F-Actin Networks Cross-Linked by Hinged Filamins Replicate Mechanical Properties of Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
6
), pp.
1762
1767
.10.1073/pnas.0504777103
117.
Pawelzyk
,
P.
,
Mücke
,
N.
,
Herrmann
,
H.
, and
Willenbacher
,
N.
,
2014
, “
Attractive Interactions Among Intermediate Filaments Determine Network Mechanics In Vitro
,”
PLoS One
,
9
(
4
), p.
e93194
.10.1371/journal.pone.0093194
118.
Lin
,
Y.-C.
,
Koenderink
,
G. H.
,
MacKintosh
,
F. C.
, and
Weitz
,
D. A.
,
2011
, “
Control of Non-Linear Elasticity in F-Actin Networks With Microtubules
,”
Soft Matter
,
7
(
3
), pp.
902
906
.10.1039/C0SM00478B
119.
Lu
,
L.
,
Oswald
,
S. J.
,
Ngu
,
H.
, and
Yin
,
F. C.-P.
,
2008
, “
Mechanical Properties of Actin Stress Fibers in Living Cells
,”
Biophys. J.
,
95
(
12
), pp.
6060
6071
.10.1529/biophysj.108.133462
120.
Fischer
,
R. S.
,
Gardel
,
M.
,
Ma
,
X.
,
Adelstein
,
R. S.
, and
Waterman
,
C. M.
,
2009
, “
Local Cortical Tension by Myosin Ii Guides 3d Endothelial Cell Branching
,”
Curr. Biol.
,
19
(
3
), pp.
260
265
.10.1016/j.cub.2008.12.045
121.
Wang
,
N.
,
Tolić-Nørrelykke
,
I. M.
,
Chen
,
J.
,
Mijailovich
,
S. M.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Stamenović
,
D.
,
2002
, “
Cell Prestress. I. Stiffness and Prestress Are Closely Associated in Adherent Contractile Cells
,”
Am. J. Physiol. Cell Physiol.
,
282
(
3
), pp.
C606
C616
.10.1152/ajpcell.00269.2001
122.
Miroshnikova
,
Y. A.
,
Nava
,
M. M.
, and
Wickstrom
,
S. A.
,
2017
, “
Emerging Roles of Mechanical Forces in Chromatin Regulation
,”
J. Cell Sci.
,
130
(
14
), pp.
2243
2250
.10.1242/jcs.202192
123.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
124.
Théry
,
M.
, and
Asnacios
,
A.
,
2018
, “
Cellular Stretch Reveals Superelastic Powers
,”
Nature Publishing Group
, London, UK.
125.
Webster
,
K. D.
,
Ng
,
W. P.
, and
Fletcher
,
D. A.
,
2014
, “
Tensional Homeostasis in Single Fibroblasts
,”
Biophys. J.
,
107
(
1
), pp.
146
155
.10.1016/j.bpj.2014.04.051
126.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
,
2005
, “
Creep Function of a Single Living Cell
,”
Biophys. J.
,
88
(
3
), pp.
2224
2233
.10.1529/biophysj.104.050278
127.
Lenormand
,
G.
,
Millet
,
E.
,
Fabry
,
B.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2004
, “
Linearity and Time-Scale Invariance of the Creep Function in Living Cells
,”
J. R. Soc. Interface
,
1
(
1
), pp.
91
97
.10.1098/rsif.2004.0010
128.
Takahashi
,
R.
, and
Okajima
,
T.
,
2015
, “
Mapping Power-Law Rheology of Living Cells Using Multi-Frequency Force Modulation Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
107
(
17
), p.
173702
.10.1063/1.4934874
129.
Wirtz
,
D.
,
2009
, “
Particle-Tracking Microrheology of Living Cells: Principles and Applications
,”
Annu. Rev. Biophys.
,
38
(
1
), pp.
301
326
.10.1146/annurev.biophys.050708.133724
130.
Sollich
,
P.
,
Lequeux
,
F.
,
Hebraud
,
P.
, and
Cates
,
M. E.
,
1997
, “
Rheology of Soft Glassy Materials
,”
Phys. Rev. Lett.
,
78
(
10
), pp.
2020
2023
.10.1103/PhysRevLett.78.2020
131.
Guck
,
J.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Wottawah
,
F.
,
Ebert
,
S.
,
Romeyke
,
M.
,
Lenz
,
D.
,
Erickson
,
H. M.
,
Ananthakrishnan
,
R.
,
Mitchell
,
D.
,
Kas
,
J.
,
Ulvick
,
S.
, and
Bilby
,
C.
,
2005
, “
Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence
,”
Biophys. J.
,
88
(
5
), pp.
3689
3698
.10.1529/biophysj.104.045476
132.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
,
2007
, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
1791
.10.1529/biophysj.106.083097
133.
Efremov
,
Y. M.
,
Wang
,
W. H.
,
Hardy
,
S. D.
,
Geahlen
,
R. L.
, and
Raman
,
A.
,
2017
, “
Measuring Nanoscale Viscoelastic Parameters of Cells Directly From AFM Force-Displacement Curves
,”
Sci. Rep.
,
7
(
1
), p.
1541
.10.1038/s41598-017-01784-3
134.
Li
,
M.
,
Liu
,
L.
,
Xi
,
N.
, and
Wang
,
Y.
,
2018
, “
Atomic Force Microscopy Studies on Cellular Elastic and Viscoelastic Properties
,”
Sci. China Life Sci.
,
61
(
1
), pp.
57
67
.10.1007/s11427-016-9041-9
135.
Yamada
,
S.
,
Wirtz
,
D.
, and
Kuo
,
S. C.
,
2000
, “
Mechanics of Living Cells Measured by Laser Tracking Microrheology
,”
Biophys. J.
,
78
(
4
), pp.
1736
1747
.10.1016/S0006-3495(00)76725-7
136.
Kim
,
T.
,
Gardel
,
M. L.
, and
Munro
,
E.
,
2014
, “
Determinants of Fluidlike Behavior and Effective Viscosity in Cross-Linked Actin Networks
,”
Biophys. J.
,
106
(
3
), pp.
526
534
.10.1016/j.bpj.2013.12.031
137.
McFadden
,
W. M.
,
McCall
,
P. M.
,
Gardel
,
M. L.
, and
Munro
,
E. M.
,
2017
, “
Filament Turnover Tunes Both Force Generation and Dissipation to Control Long-Range Flows in a Model Actomyosin Cortex
,”
PLoS Comput. Biol.
,
13
(
12
), p.
e1005811
.10.1371/journal.pcbi.1005811
138.
McCall
,
P. M.
,
MacKintosh
,
F. C.
,
Kovar
,
D. R.
, and
Gardel
,
M. L.
,
2019
, “
Cofilin Drives Rapid Turnover and Fluidization of Entangled F-Actin
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
26
), pp.
12629
12637
.10.1073/pnas.1818808116
139.
Hiraiwa
,
T.
, and
Salbreux
,
G.
,
2016
, “
Role of Turnover in Active Stress Generation in a Filament Network
,”
Phys. Rev. Lett.
,
116
(
18
), p.
188101
.10.1103/PhysRevLett.116.188101
140.
Jung
,
W.
,
Murrell
,
M. P.
, and
Kim
,
T.
,
2016
, “
F-Actin Fragmentation Induces Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton
,”
ACS Macro Lett.
,
5
(
6
), pp.
641
645
.10.1021/acsmacrolett.6b00232
141.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.10.1126/science.347575
142.
Dembo
,
M.
,
Torney
,
D.
,
Saxman
,
K.
, and
Hammer
,
D.
,
1988
, “
The Reaction-Limited Kinetics of Membrane-to-Surface Adhesion and Detachment
,”
Proc. R. Soc. London B
,
234
(
1274
), pp.
55
83
.10.1098/rspb.1988.0038
143.
Heussinger
,
C.
,
2012
, “
Stress Relaxation Through Crosslink Unbinding in Cytoskeletal Networks
,”
New J. Phys.
,
14
(
9
), p.
095029
.10.1088/1367-2630/14/9/095029
144.
Kim
,
T.
,
Hwang
,
W.
, and
Kamm
,
R. D.
,
2011
, “
Dynamic Role of Cross-Linking Proteins in Actin Rheology
,”
Biophys. J.
,
101
(
7
), pp.
1597
1603
.10.1016/j.bpj.2011.08.033
145.
Leitner
,
A.
,
Paust
,
T.
,
Marti
,
O.
,
Walther
,
P.
,
Herrmann
,
H.
, and
Beil
,
M.
,
2012
, “
Properties of Intermediate Filament Networks Assembled From Keratin 8 and 18 in the Presence of Mg(2)+
,”
Biophys. J.
,
103
(
2
), pp.
195
201
.10.1016/j.bpj.2012.06.014
146.
Kubitschke
,
H.
,
Schnauss
,
J.
,
Nnetu
,
K. D.
,
Warmt
,
E.
,
Stange
,
R.
, and
Kaes
,
J.
,
2017
, “
Actin and Microtubule Networks Contribute Differently to Cell Response for Small and Large Strains
,”
New J. Phys.
,
19
(
9
), p.
093003
.10.1088/1367-2630/aa7658
147.
Bonakdar
,
N.
,
Gerum
,
R.
,
Kuhn
,
M.
,
Sporrer
,
M.
,
Lippert
,
A.
,
Schneider
,
W.
,
Aifantis
,
K. E.
, and
Fabry
,
B.
,
2016
, “
Mechanical Plasticity of Cells
,”
Nat. Mater.
,
15
(
10
), pp.
1090
1094
.10.1038/nmat4689
148.
Dumais
,
J.
,
Shaw
,
S. L.
,
Steele
,
C. R.
,
Long
,
S. R.
, and
Ray
,
P. M.
,
2006
, “
An Anisotropic-Viscoplastic Model of Plant Cell Morphogenesis by Tip Growth
,”
Int. J. Dev. Biol.
,
50
(
2–3
), pp.
209
222
.10.1387/ijdb.052066jd
149.
Huang
,
R.
,
Becker
,
A. A.
, and
Jones
,
I. A.
,
2012
, “
Modelling Cell Wall Growth Using a Fibre-Reinforced Hyperelastic–Viscoplastic Constitutive Law
,”
J. Mech. Phys. Solids
,
60
(
4
), pp.
750
783
.10.1016/j.jmps.2011.12.003
150.
Huang
,
R.
,
Becker
,
A. A.
, and
Jones
,
I. A.
,
2015
, “
A Finite Strain Fibre-Reinforced Viscoelasto-Viscoplastic Model of Plant Cell Wall Growth
,”
J. Eng. Math.
,
95
(
1
), pp.
121
154
.10.1007/s10665-014-9761-y
151.
Lardennois
,
A.
,
Pasti
,
G.
,
Ferraro
,
T.
,
Llense
,
F.
,
Mahou
,
P.
,
Pontabry
,
J.
,
Rodriguez
,
D.
,
Kim
,
S.
,
Ono
,
S.
,
Beaurepaire
,
E.
,
Gally
,
C.
, and
Labouesse
,
M.
,
2019
, “
An Actin-Based Viscoplastic Lock Ensures Progressive Body-Axis Elongation
,”
Nature
,
573
(
7773
), pp.
266
270
.10.1038/s41586-019-1509-4
152.
Stefano
,
P.
,
Bastien
,
L.
,
Francisco
,
J. P.-R.
,
Franck
,
E. N.
,
Véronique Maguer
,
S.
,
Alain
,
A.
, and
Françoise
,
A.
,
2018
, “
A Minimal Rupture Cascade Model for Living Cell Plasticity
,”
New J. Phys.
,
20
(
5
), p.
053057
.10.1088/1367-2630/aac3c7
153.
Feneberg
,
W.
,
Westphal
,
M.
, and
Sackmann
,
E.
,
2001
, “
Dictyostelium Cells' Cytoplasm as an Active Viscoplastic Body
,”
Eur. Biophys. J.
,
30
(
4
), pp.
284
294
.10.1007/s002490100135
154.
Pekny
,
M.
, and
Lane
,
E. B.
,
2007
, “
Intermediate Filaments and Stress
,”
Exp. Cell Res.
,
313
(
10
), pp.
2244
2254
.10.1016/j.yexcr.2007.04.023
155.
Ramms
,
L.
,
Fabris
,
G.
,
Windoffer
,
R.
,
Schwarz
,
N.
,
Springer
,
R.
,
Zhou
,
C.
,
Lazar
,
J.
,
Stiefel
,
S.
,
Hersch
,
N.
,
Schnakenberg
,
U.
,
Magin
,
T. M.
,
Leube
,
R. E.
,
Merkel
,
R.
, and
Hoffmann
,
B.
,
2013
, “
Keratins as the Main Component for the Mechanical Integrity of Keratinocytes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
46
), pp.
18513
18518
.10.1073/pnas.1313491110
156.
Armiger
,
T. J.
,
Spagnol
,
S. T.
, and
Dahl
,
K. N.
,
2016
, “
Nuclear Mechanical Resilience but Not Stiffness is Modulated by Alphaii-Spectrin
,”
J. Biomech.
,
49
(
16
), pp.
3983
3989
.10.1016/j.jbiomech.2016.10.034
157.
Charras
,
G. T.
,
Mitchison
,
T. J.
, and
Mahadevan
,
L.
,
2009
, “
Animal Cell Hydraulics
,”
J. Cell Sci.
,
122
(
18
), pp.
3233
3241
.10.1242/jcs.049262
158.
Mollaeian
,
K.
,
Liu
,
Y.
, and
Ren
,
J.
, “
Investigation of Nanoscale Poroelasticity of Eukaryotic Cells Using Atomic Force Microscopy
,”
ASME
Paper No. DSCC2017-5254.10.1115/DSCC2017-5254
159.
Wei
,
F.
,
Lan
,
F.
,
Liu
,
B.
,
Liu
,
L.
, and
Li
,
G.
,
2016
, “
Poroelasticity of Cell Nuclei Revealed Through Atomic Force Microscopy Characterization
,”
Appl. Phys. Lett.
,
109
(
21
), p.
213701
.10.1063/1.4968191
160.
Kimpton
,
L. S.
,
Whiteley
,
J. P.
,
Waters
,
S. L.
, and
Oliver
,
J. M.
,
2015
, “
On a Poroviscoelastic Model for Cell Crawling
,”
J. Math. Biol.
,
70
(
1–2
), pp.
133
171
.10.1007/s00285-014-0755-1
161.
Taber
,
L. A.
,
Shi
,
Y.
,
Yang
,
L.
, and
Bayly
,
P. V.
,
2011
, “
A Poroelastic Model for Cell Crawling Including Mechanical Coupling Between Cytoskeletal Contraction and Actin Polymerization
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
569
589
.10.2140/jomms.2011.6.569
162.
Zhang
,
D.
,
2005
, “
Oscillatory Pressurization of an Animal Cell as a Poroelastic Spherical Body
,”
Ann. Biomed. Eng.
,
33
(
9
), pp.
1249
1269
.10.1007/s10439-005-5688-9
163.
Charras
,
G. T.
,
Yarrow
,
J. C.
,
Horton
,
M. A.
,
Mahadevan
,
L.
, and
Mitchison
,
T.
,
2005
, “
Non-Equilibration of Hydrostatic Pressure in Blebbing Cells
,”
Nature
,
435
(
7040
), pp.
365
369
.10.1038/nature03550
164.
Charras
,
G. T.
,
Coughlin
,
M.
,
Mitchison
,
T. J.
, and
Mahadevan
,
L.
,
2008
, “
Life and Times of a Cellular Bleb
,”
Biophys. J.
,
94
(
5
), pp.
1836
1853
.10.1529/biophysj.107.113605
165.
Strychalski
,
W.
, and
Guy
,
R. D.
,
2016
, “
Intracellular Pressure Dynamics in Blebbing Cells
,”
Biophys. J.
,
110
(
5
), pp.
1168
1179
.10.1016/j.bpj.2016.01.012
166.
Zhu
,
X.
,
Cirovic
,
S.
,
Shaheen
,
A.
, and
Xu
,
W.
,
2018
, “
Investigation of Fullerenol-Induced Changes in Poroelasticity of Human Hepatocellular Carcinoma by AFM-Based Creep Tests
,”
Biomech. Model. Mechanobiol.
,
17
(
3
), pp.
665
674
.10.1007/s10237-017-0984-5
167.
Karcher
,
H.
,
Lammerding
,
J.
,
Huang
,
H. D.
,
Lee
,
R. T.
,
Kamm
,
R. D.
, and
Kaazempur-Mofrad
,
M. R.
,
2003
, “
A Three-Dimensional Viscoelastic Model for Cell Deformation With Experimental Verification
,”
Biophys. J.
,
85
(
5
), pp.
3336
3349
.10.1016/S0006-3495(03)74753-5
168.
Mijailovich
,
S. M.
,
Kojic
,
M.
,
Zivkovic
,
M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
A Finite Element Model of Cell Deformation During Magnetic Bead Twisting
,”
J. Appl. Physiol. (1985)
,
93
(
4
), pp.
1429
1436
.10.1152/japplphysiol.00255.2002
169.
Ohayon
,
J.
,
Tracqui
,
P.
,
Fodil
,
R.
,
FéRéOl
,
S.
,
Laurent
,
V´R. M.
,
Planus
,
E.
, and
Isabey
,
D.
,
2004
, “
Analysis of Nonlinear Responses of Adherent Epithelial Cells Probed by Magnetic Bead Twisting: A Finite Element Model Based on a Homogenization Approach
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
685
698
.10.1115/1.1824136
170.
Mack
,
P. J.
,
Kaazempur-Mofrad
,
M. R.
,
Karcher
,
H.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
,
2004
, “
Force-Induced Focal Adhesion Translocation: Effects of Force Amplitude and Frequency
,”
Am. J. Physiol. Cell Physiol.
,
287
(
4
), pp.
C954
–C
962
.10.1152/ajpcell.00567.2003
171.
Carniel
,
T. A.
, and
Fancello
,
E. A.
,
2017
, “
Modeling the Local Viscoelastic Behavior of Living Cells Under Nanoindentation Tests
,”
Lat. Am. J. Solids. Struct.
,
14
(
5
), pp.
844
860
.10.1590/1679-78253748
172.
Baaijens
,
F. P. T.
,
Trickey
,
W. R.
,
Laursen
,
T. A.
, and
Guilak
,
F.
,
2005
, “
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
494
501
.10.1007/s10439-005-2506-3
173.
Milner
,
J. S.
,
Grol
,
M. W.
,
Beaucage
,
K. L.
,
Dixon
,
S. J.
, and
Holdsworth
,
D. W.
,
2012
, “
Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain
,”
J. Funct. Biomater.
,
3
(
1
), pp.
209
224
.10.3390/jfb3010209
174.
Barnhart
,
E. L.
,
Allen
,
G. M.
,
Jülicher
,
F.
, and
Theriot
,
J. A.
,
2010
, “
Bipedal Locomotion in Crawling Cells
,”
Biophys. J.
,
98
(
6
), pp.
933
942
.10.1016/j.bpj.2009.10.058
175.
Strychalski
,
W.
,
Copos
,
C. A.
,
Lewis
,
O. L.
, and
Guy
,
R. D.
,
2015
, “
A Poroelastic Immersed Boundary Method With Applications to Cell Biology
,”
J. Comput. Phys.
,
282
, pp.
77
97
.10.1016/j.jcp.2014.10.004
176.
Ujihara
,
Y.
,
Nakamura
,
M.
,
Miyazaki
,
H.
, and
Wada
,
S.
,
2010
, “
Proposed Spring Network Cell Model Based on a Minimum Energy Concept
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1530
1538
.10.1007/s10439-010-9930-8
177.
Fang
,
Y.
, and
Lai
,
K. W.
,
2016
, “
Modeling the Mechanics of Cells in the Cell-Spreading Process Driven by Traction Forces
,”
Phys. Rev. E
,
93
(
4
), p.
042404
.10.1103/PhysRevE.93.042404
178.
Zeng
,
Y.
,
Yip
,
A. K.
,
Teo
,
S.-K.
, and
Chiam
,
K.-H.
,
2012
, “
A Three-Dimensional Random Network Model of the Cytoskeleton and Its Role in Mechanotransduction and Nucleus Deformation
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
49
59
.10.1007/s10237-011-0292-4
179.
Sandersius
,
S. A.
, and
Newman
,
T. J.
,
2008
, “
Modeling Cell Rheology With the Subcellular Element Model
,”
Phys. Biol.
,
5
(
1
), p.
015002
.10.1088/1478-3975/5/1/015002
180.
Morse
,
P. M.
,
1929
, “
Diatomic Molecules According to the Wave Mechanics—II: Vibrational Levels
,”
Phys. Rev.
,
34
(
1
), pp.
57
64
.10.1103/PhysRev.34.57
181.
Espanol
,
P.
, and
Warren
,
P.
,
1995
, “
Statistical Mechanics of Dissipative Particle Dynamics
,”
EPL
,
30
(
4
), pp.
191
196
.10.1209/0295-5075/30/4/001
182.
Lykov
,
K.
,
Nematbakhsh
,
Y.
,
Shang
,
M.
,
Lim
,
C. T.
, and
Pivkin
,
I. V.
,
2017
, “
Probing Eukaryotic Cell Mechanics Via Mesoscopic Simulations
,”
PLoS Comput. Biol.
,
13
(
9
), p.
e1005726
.10.1371/journal.pcbi.1005726
183.
Barreto
,
S.
,
Clausen
,
C. H.
,
Perrault
,
C. M.
,
Fletcher
,
D. A.
, and
Lacroix
,
D.
,
2013
, “
A Multi-Structural Single Cell Model of Force-Induced Interactions of Cytoskeletal Components
,”
Biomaterials
,
34
(
26
), pp.
6119
6126
.10.1016/j.biomaterials.2013.04.022
184.
Han
,
Y. L.
,
Pegoraro
,
A. F.
,
Li
,
H.
,
Li
,
K.
,
Yuan
,
Y.
,
Xu
,
G.
,
Gu
,
Z.
,
Sun
,
J.
,
Hao
,
Y.
,
Gupta
,
S. K.
,
Li
,
Y.
,
Tang
,
W.
,
Kang
,
H.
,
Teng
,
L.
,
Fredberg
,
J. J.
, and
Guo
,
M.
,
2020
, “
Cell Swelling, Softening and Invasion in a Three-Dimensional Breast Cancer Model
,”
Nat. Phys.
,
16
(
1
), pp.
101
108
.10.1038/s41567-019-0680-8
You do not currently have access to this content.