Abstract

Because of its simplicity, static optimization (SO) is frequently used to resolve the muscle redundancy problem (i.e., more muscles than degrees-of-freedom (DOF) in the human musculoskeletal system). However, SO minimizes antagonistic co-activation and likely joint stiffness as well, which may not be physiologically realistic since the body modulates joint stiffness during movements such as walking. Knowledge of joint stiffness is limited due to the difficulty of measuring it experimentally, leading researchers to estimate it using computational models. This study explores how imposing a synergy structure on the muscle activations estimated by optimization (termed “synergy optimization,” or SynO) affects calculated lower body joint stiffnesses during walking. By limiting the achievable muscle activations and coupling all time frames together, a synergy structure provides a potential mechanism for reducing indeterminacy and improving physiological co-activation but at the cost of a larger optimization problem. To compare joint stiffnesses produced by SynO (2–6 synergies) and SO, we used both approaches to estimate lower body muscle activations and forces for sample experimental overground walking data obtained from the first knee grand challenge competition. Both optimizations used a custom Hill-type muscle model that permitted analytic calculation of individual muscle contributions to the stiffness of spanned joints. Both approaches reproduced inverse dynamic joint moments well over the entire gait cycle, though SynO with only two synergies exhibited the largest errors. Maximum and mean joint stiffnesses for hip and knee flexion in particular decreased as the number of synergies increased from 2 to 6, with SO producing the lowest joint stiffness values. Our results suggest that SynO increases joint stiffness by increasing muscle co-activation, and furthermore, that walking with a reduced number of synergies may result in increased joint stiffness and perhaps stability.

References

1.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
2.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
3.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
4.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Forward Dynamic Optimization of Human Gait Simulations: A Global Parameterization Approach
,”
ASME J. Comput. Nonlinear Dyn
,
9
(
3
), p.
31018
.10.1115/1.4026266
5.
Ackermann
,
M.
, and
Schiehlen
,
W.
,
2009
, “
Physiological Methods to Solve the Force-Sharing Problem in Biomechanics
,”
Multibody Dynamics
, Vol.
12
,
C.
Bottasso
, ed.,
Springer
,
Dordrecht
,
The Netherlands
, pp.
1
23
.
6.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051005
.10.1115/1.4036195
7.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.10.1016/S0021-9290(00)00155-X
8.
De Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.10.1007/s10439-016-1591-9
9.
Hof
,
A. L.
, and
den Berg
,
J.
,
1981
, “
EMG to Force Processing II: Estimation of parameters of the Hill Muscle Model for the Human Triceps Surae by Means of a Calfergometer
,”
J. Biomech.
,
14
(
11
), pp.
759
770
.10.1016/0021-9290(81)90032-4
10.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.10.1016/S0021-9290(03)00010-1
11.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
, and
Manal
,
K.
,
2004
, “
Neuromusculoskeletal Modeling : Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395.
10.1123/jab.20.4.367
12.
Sartori
,
M.
,
Reggiani
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2012
, “
EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment About Multiple Degrees of Freedom in the Human Lower Extremity
,”
PLoS One
,
7
(
12
), p.
e52618
.10.1371/journal.pone.0052618
13.
Meyer
,
A. J.
, and
Fregly
,
B. J.
,
2016
, “
Lower Extremity EMG-Driven Modeling With Automated Adjustment of Geometry
,”
PLoS One
,
12
(
7
), p.
e0179698
.10.1371/journal.pone.0179698
14.
Farina
,
D.
,
Merletti
,
R.
, and
Enoka
,
R. M.
,
2004
, “
The Extraction of Neural Strategies From the Surface EMG
,”
J. Appl. Physiol.
,
96
(
4
), pp.
1486
1495
.10.1152/japplphysiol.01070.2003
15.
Winter
,
D. A.
,
Fuglevand
,
A. J.
, and
Archer
,
S. E.
,
1994
, “
Crosstalk in Surface Electromyography: Theoretical and Practical Estimates
,”
J. Electromyogr. Kinesiol.
,
4
(
1
), pp.
15
26
.10.1016/1050-6411(94)90023-X
16.
De Luca
,
C. J.
,
Gilmore
,
L. D.
,
Kuznetsov
,
M.
, and
Roy
,
S. H.
,
2010
, “
Filtering the Surface EMG Signal: Movement Artifact and Baseline Noise Contamination
,”
J. Biomech.
,
43
(
8
), pp.
1573
1579
.10.1016/j.jbiomech.2010.01.027
17.
Fridlund
,
A. J.
, and
Cacioppo
,
J. T.
,
1986
, “
Guidelines for Human Electromyographic Research
,”
Psychophysiology
,
23
(
5
), pp.
567
589
.10.1111/j.1469-8986.1986.tb00676.x
18.
Mirka
,
G. A.
,
1991
, “
The Quantification of EMG Normalization Error
,”
Ergonomics
,
34
(
3
), pp.
343
352
.10.1080/00140139108967318
19.
S.
Shourijeh
,
M.
,
Smale
,
K. B.
,
Potvin
,
B. M.
, and
Benoit
,
D. L.
,
2016
, “
A Forward-Muscular Inverse-Skeletal Dynamics Framework for Human Musculoskeletal Simulations
,”
J. Biomech.
,
49
(
9
), pp.
1718
1723
.10.1016/j.jbiomech.2016.04.007
20.
Happee
,
R.
, and
Van der Helm
,
F. C. T.
,
1995
, “
The Control of Shoulder Muscles During Goal-Directed Movements, an Inverse Dynamic Analysis
,”
J. Biomech.
,
28
(
10
), pp.
1179
1191
.10.1016/0021-9290(94)00181-3
21.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021005
.10.1115/1.4024911
22.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open Source to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
23.
Herzog
,
W.
, and
Binding
,
P.
,
1992
, “
Predictions of Antagonistic Muscular Activity Using Nonlinear Optimization
,”
Math. Biosci.
,
111
(
2
), pp.
217
229
.10.1016/0025-5564(92)90071-4
24.
Herzog
,
W.
, and
Binding
,
P.
,
1993
, “
Cocontraction of Pairs of Antagonistic Muscles: Analytical Solution for Planar Static Nonlinear Optimization Approaches
,”
Math. Biosci.
,
118
(
1
), pp.
83
95
.10.1016/0025-5564(93)90034-8
25.
Davis
,
R. B.
, and
DeLuca
,
P. A.
,
1996
, “
Gait Characterization Via Dynamic Joint Stiffness
,”
Gait Posture
,
4
(
3
), pp.
224
231
.10.1016/0966-6362(95)01045-9
26.
Pfeifer
,
S.
,
Vallery
,
H.
,
Hardegger
,
M.
,
Riener
,
R.
, and
Perreault
,
E. J.
,
2012
, “
Model-Based Estimation of Knee Stiffness
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2604
2612
.10.1109/TBME.2012.2207895
27.
Sartori
,
M.
,
Maculan
,
M.
,
Pizzolato
,
C.
,
Reggiani
,
M.
, and
Farina
,
D.
,
2015
, “
Modeling and Simulating the Neuromuscular Mechanisms Regulating Ankle and Knee Joint Stiffness During Human Locomotion
,”
J. Neurophysiol.
,
114
(
4
), pp.
2509
2527
.10.1152/jn.00989.2014
28.
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2009
, “
Modular Control of Human Walking: A Simulation Study
,”
J. Biomech.
,
42
(
9
), pp.
1282
1287
.10.1016/j.jbiomech.2009.03.009
29.
Allen
,
J. L.
, and
Neptune
,
R. R.
,
2012
, “
Three-Dimensional Modular Control of Human Walking
,”
J. Biomech.
,
45
(
12
), pp.
2157
2163
.10.1016/j.jbiomech.2012.05.037
30.
Razavian
,
R. S.
,
Ghannadi
,
B.
, and
McPhee
,
J.
,
2019
, “
A Synergy-Based Motor Control Framework for the Fast Feedback Control of Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031009
.10.1115/1.4042185
31.
Mehrabi
,
N.
,
Schwartz
,
M. H.
, and
Steele
,
K. M.
,
2019
, “
Can Altered Muscle Synergies Control Unimpaired Gait?
,”
J. Biomech.
,
90
, pp.
84
91
.10.1016/j.jbiomech.2019.04.038
32.
Allen
,
J. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2013
, “
The Influence of Merged Muscle Excitation Modules on Post-Stroke Hemiparetic Walking Performance
,”
Clin. Biomech.
,
28
(
6
), pp.
697
704
.10.1016/j.clinbiomech.2013.06.003
33.
McGowan
,
C. P.
,
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2010
, “
Modular Control of Human Walking: Adaptations to Altered Mechanical Demands
,”
J. Biomech.
,
43
(
3
), pp.
412
419
.10.1016/j.jbiomech.2009.10.009
34.
Sartori
,
M.
,
Gizzi
,
L.
,
Lloyd
,
D. G.
, and
Farina
,
D.
,
2013
, “
A Musculoskeletal Model of Human Locomotion Driven by a Low Dimensional Set of Impulsive Excitation Primitives
,”
Front. Comput. Neurosci.
,
7
, pp.
1
22
.10.3389/fncom.2013.00079
35.
Walter Allison
,
J. P.
,
Kinney
,
L.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
, and
Fregly
,
B. J.
,
2014
, “
Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking
,”
ASME J. Biomech. Eng
,
136
(
2
), p.
21031
.10.1115/1.4026428
36.
Gopalakrishnan
,
A.
,
Modenese
,
L.
, and
Phillips
,
A. T. M.
,
2014
, “
A Novel Computational Framework for Deducing Muscle Synergies From Experimental Joint Moments
,”
Front. Comput. Neurosci.
,
8
, pp.
1
15
.10.3389/fncom.2014.00153
37.
Steele
,
K. M.
,
Tresch
,
M. C.
, and
Perreault
,
E. J.
,
2015
, “
Consequences of Biomechanically Constrained Tasks in the Design and Interpretation of Synergy Analyses
,”
J. Neurophysiol.
,
113
(
7
), pp.
2102
2113
.10.1152/jn.00769.2013
38.
Meyer
,
A. J.
,
Eskinazi
,
I.
,
Jackson
,
J. N.
,
Rao
,
A. V.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2016
, “
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions
,”
Front. Bioeng. Biotechnol.
,
4
(
77
), pp.
1
26
.10.3389/fbioe.2016.00077
39.
Serrancolí
,
G.
,
Kinney
,
A. L.
,
Fregly
,
B. J.
, and
Font-Llagunes
,
J. M.
,
2016
, “
Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking
,”
ASME J. Biomech. Eng
,
138
(
8
), p.
81001
.10.1115/1.4033673
40.
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
,
F.
,
2004
, “
Five Basic Muscle Activation Patterns Account for Muscle Activity During Human Locomotion
,”
J. Physiol.
,
556
(
1
), pp.
267
282
.10.1113/jphysiol.2003.057174
41.
Cappellini
,
G.
,
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
,
F.
,
2006
, “
Motor Patterns in Human Walking and running
,”
J. Neurophysiol.
,
95
(
6
), pp.
3426
3437
.10.1152/jn.00081.2006
42.
Shourijeh
,
M. S.
,
Flaxman
,
T. E.
, and
Benoit
,
D. L.
,
2016
, “
An Approach for Improving Repeatability and Reliability of Non-Negative Matrix Factorization for Muscle Synergy Analysis
,”
J. Electromyogr. Kinesiol.
,
26
, pp.
36
43
.10.1016/j.jelekin.2015.12.001
43.
Bianco
,
N. A.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2018
, “
Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?
,”
ASME J. Biomech. Eng
,
140
(
1
), p.
011011
.10.1115/1.4038199
44.
Smale
,
K. B.
,
Shourijeh
,
M. S.
, and
Benoit
,
D. L.
,
2016
, “
Use of Muscle Synergies and Wavelet Transforms to Identify Fatigue During Squatting
,”
J. Electromyogr. Kinesiol.
,
28
, pp.
158
166
.10.1016/j.jelekin.2016.04.008
45.
Kristiansen
,
M.
,
Madeleine
,
P.
,
Hansen
,
E. A.
, and
Samani
,
A.
,
2014
, “
Inter‐Subject Variability of Muscle Synergies During Bench Press in Power Lifters and Untrained Individuals
,”
Scand. J. Med. Sci. Sports
,
25
(
1
), pp.
89
97
.
46.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
47.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
48.
Menegaldo
,
L. L.
,
de Toledo Fleury
,
A.
, and
Weber
,
H. I.
,
2004
, “
Moment Arms and Musculotendon Lengths Estimation for a Three-Dimensional Lower-Limb Model
,”
J. Biomech.
,
37
(
9
), pp.
1447
1453
.10.1016/j.jbiomech.2003.12.017
49.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
What Is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalized Coordinates
,”
ASME
Paper No. DETC2013-13633.10.1115/DETC2013-13633
50.
MATLAB,
2018
, “
MATLAB Version 9.4 (R2018a)
,” The MathWorks, Natick, MA.
51.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
CRC Crit. Rev. Biomed. Eng
,
19
(
4
), pp.
359
411
.
52.
Lee
,
D. D.
, and
Seung
,
H. S.
,
1999
, “
Learning the Parts of Objects by Non-Negative Matrix Factorization
,”
Nature
,
401
(
6755
), p.
788
.10.1038/44565
53.
Lee
,
D. D.
, and
Seung
,
H. S.
,
2000
, “
Algorithms for Non-Negative Matrix Factorization
,”
Adv. Neural Inf. Process. Syst.
, pp.
556
562
.
54.
Tresch
,
M. C.
,
Cheung
,
V. C. K.
, and
d'Avella
,
A.
,
2006
, “
Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets
,”
J. Neurophysiol.
,
95
(
4
), pp.
2199
2212
.10.1152/jn.00222.2005
55.
Ting
,
L. H.
, and
Macpherson
,
J. M.
,
2005
, “
A Limited Set of Muscle Synergies for Force Control During a Postural Task
,”
J. Neurophysiol.
,
93
(
1
), pp.
609
613
.10.1152/jn.00681.2004
56.
Torres-Oviedo
,
G.
,
Macpherson
,
J. M.
, and
Ting
,
L. H.
,
2006
, “
Muscle Synergy Organization Is Robust Across a Variety of Postural Perturbations
,”
J. Neurophysiol.
,
96
(
3
), pp.
1530
1546
.10.1152/jn.00810.2005
57.
Bühlmann
,
P.
, and
Van De Geer
,
S.
,
2011
,
Statistics for High-Dimensional Data: Methods, Theory and Applications
,
Springer Science & Business Media
,
Berlin
.
58.
Bekey
,
G. A.
,
1964
, “
Optimization of Multiparameter Systems by Hybrid Computer Techniques—Part I
,”
Simulation
,
2
(
2
), pp.
19
32
.10.1177/003754976400200212
59.
Clark
,
D. J.
,
Ting
,
L. H.
,
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2010
, “
Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke
,”
J. Neurophysiol.
,
103
(
2
), pp.
844
857
.10.1152/jn.00825.2009
60.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D. W.
,
Milner
,
T. E.
, and
Kawato
,
M.
,
2001
, “
The Central Nervous System Stabilizes Unstable Dynamics by Learning Optimal Impedance
,”
Nature
,
414
(
6862
), pp.
446
449
.10.1038/35106566
61.
Takahashi
,
C. D.
,
Scheidt
,
R. A.
, and
Reinkensmeyer
,
D. J.
,
2001
, “
Impedance Control and Internal Model Formation When Reaching in a Randomly Varying Dynamical Environment
,”
J. Neurophysiol.
,
86
(
2
), pp.
1047
1051
.10.1152/jn.2001.86.2.1047
62.
Bong
,
M. R.
, and
Di Cesare
,
P. E.
,
2004
, “
Stiffness After Total Knee Arthroplasty
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
12
(
3
), pp.
164
171
.10.5435/00124635-200405000-00004
63.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Barcelona, Spain
, Apr. 18–22, pp.
526
531
.10.1109/ROBOT.2005.1570172
64.
Brown
,
S. H. M.
, and
McGill
,
S. M.
,
2005
, “
Muscle Force-Stiffness Characteristics Influence Joint Stability: A Spine Example
,”
Clin. Biomech.
,
20
(
9
), pp.
917
922
.10.1016/j.clinbiomech.2005.06.002
65.
Franklin
,
D. W.
,
So
,
U.
,
Kawato
,
M.
, and
Milner
,
T. E.
,
2004
, “
Impedance Control Balances Stability With Metabolically Costly Muscle Activation
,”
J. Neurophysiol.
,
92
(
5
), pp.
3097
3105
.10.1152/jn.00364.2004
66.
Kearney
,
R. E.
,
Stein
,
R. B.
, and
Parameswaran
,
L.
,
1997
, “
Identification of Intrinsic and Reflex Contributions to Human Ankle Stiffness Dynamics
,”
IEEE Trans. Biomed. Eng.
,
44
(
6
), pp.
493
504
.10.1109/10.581944
67.
Rack
,
P. M. H.
, and
Westbury
,
D. R.
,
1974
, “
The Short Range Stiffness of Active Mammalian Muscle and Its Effect on Mechanical Properties
,”
J. Physiol.
,
240
(
2
), pp.
331
350
.10.1113/jphysiol.1974.sp010613
68.
Cui
,
L.
,
Perreault
,
E. J.
, and
Sandercock
,
T. G.
,
2007
, “
Motor Unit Composition Has Little Effect on the Short-Range Stiffness of Feline Medial Gastrocnemius Muscle
,”
J. Appl. Physiol.
,
103
(
3
), pp.
796
802
.10.1152/japplphysiol.01451.2006
69.
Kitatani
,
R.
,
Ohata
,
K.
,
Sato
,
S.
,
Watanabe
,
A.
,
Hashiguchi
,
Y.
,
Yamakami
,
N.
,
Sakuma
,
K.
, and
Yamada
,
S.
,
2016
, “
Ankle Muscle Coactivation and Its Relationship With Ankle Joint Kinematics and Kinetics During Gait in Hemiplegic Patients After Stroke
,”
Somatosens. Mot. Res.
,
33
(
2
), pp.
79
85
.10.1080/08990220.2016.1178636
70.
Rinalduzzi
,
S.
,
Trompetto
,
C.
,
Marinelli
,
L.
,
Alibardi
,
A.
,
Missori
,
P.
,
Fattapposta
,
F.
,
Pierelli
,
F.
, and
Currà
,
A.
,
2015
, “
Balance Dysfunction in Parkinson's Disease
,”
Biomed Res. Int.
,
2015
, pp.
1
10
.10.1155/2015/434683
71.
Rodriguez
,
K. L.
,
Roemmich
,
R. T.
,
Cam
,
B.
,
Fregly
,
B. J.
, and
Hass
,
C. J.
,
2013
, “
Persons With Parkinson's Disease Exhibit Decreased Neuromuscular Complexity During Gait
,”
Clin. Neurophysiol.
,
124
(
7
), pp.
1390
1397
.10.1016/j.clinph.2013.02.006
72.
Weiss
,
P. L.
,
Hunter
,
I. W.
, and
Kearney
,
R. E.
,
1988
, “
Human Ankle Joint Stiffness Over the Full Range of Muscle Activation Levels
,”
J. Biomech.
,
21
(
7
), pp.
539
544
.10.1016/0021-9290(88)90217-5
You do not currently have access to this content.